pypsa-eur/scripts/simplify_network.py
Bobby Xiong 0c36de9bf8
Introducing OpenStreetMap high-voltage grid to PyPSA-Eur (#1079)
* Implemented  which uses the overpass API to download power features for individual countries.

* Extended  rule by input.

* Bug fixes and improvements to clean_osm_data.py. Added  in retrieve_osm_data.py.

* Updated clean_osm_data and retrieve_osm_data to create clean substations.

* Finished clean_osm_data function.

* Added check whether line is a circle. If so, drop it.

* Extended build_electricity.smk by build_osm_network.py

* Added build_osm_network

* Working osm-network-fast

* Bug fixes.

* Finalised and cleaned  including docstrings.

* Added try catch to retrieve_osm_data. Allows for parallelisation of downloads.

* Updated cleaning process.

* Set maximum number of threads for retrieving to 4, wrt. fair usage policy and potential request errors.

* Intermediate update on clean_osm_data.py. Added docstrings.

* Bug fix.

* Bug fix.

* Bug fixes in data types out of clean_osm_data

* Significant improvements to retrieve_osm_data, clean_osm_data. Cleaned code. Speed improvements

* Cleaned config.

* Fixes.

* Bug fixes.

* Updated default config

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Removed overpass from required packages. Not needed anymore.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Added links_relations (route = power, frequency = 0) to retrieval. This will change how HVDC links are extracted in the near future.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Work-in-progress clean_osm_data

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Added clean links output to clean_osm_data. Script uses OSM relations to retrieve clean HVDC links.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* New code for integrating HVDC links. Using relations. Base network implementation functioning.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* removed manual line dropping.

* Updated clean script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* reverted Snakefile to default: sync settings

* added prebuilt functionality.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated build_electricity.smk to work with scenario management.

* removed commented-out code.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* removed commented-out code.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fixed bug in pdf export by substituting pdf export with svg.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Bug-fix Snakefile

* dropped not needed columns from build_osm_network.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated build_shapes, config.default and clean_osm_data.

* pre-commit changes.

* test

* Added initial prepare_osm_network_release.py script

* Finalised prepare_osm_network_release script to build clean and stable OSM base_network input files.

* Added new rules/development.smk

* Updated clean_osm_data to add substation_centroid to linestrings

* Updated clean_osm_data to add substation_centroid to linestrings

* Updated clean_osm_data to add substation_centroid to linestrings

* Updated clean_osm_data to add substation_centroid to linestrings

* Added osm-prebuilt functionality and zenodo sandbox repository.

* Updated clean_osm_data to geopandas v.1.01

* Made base_network and build_osm_network function more robust for empty links.

* Made base_network and build_osm_network function more robust for empty links.

* Bug fix in base_network. Voltage level null is now kept (relevant e.g. for Corsica)

* Merge with hcanges in upstream PR 1146. Fixing UA and MD.

* Updated Zenodo and fixed prepare_osm_network_release

* Updated osm network release.

* Updated prepare osm network release.

* Updated MD, UA scripts.

* Cleaned determine_availability_matrix_MD_UA.py, removed redundant code

* Bug fixes.

* Bug fixes for UA MD scripts.

* Rename of build script.

* Bug fix: only distribute load to buses with substation.

* Updated zenodo sandbox repository.

* Updated config.default

* Cleaned config.default.yaml: Related settings grouped together and redundant voltage settings aggregated.

* Cleaned config.default.yaml: Related settings grouped together and redundant voltage settings aggregated. Added release notes.

* Updated Zenodo repositories for OSM-prebuilt to offcial publication.

* Updated configtables

* Updated links.csv: Under_construction lines to in commission.

* Updated link 8394 and parameter_corrections: Continuation of North-Sea-Link.

* Major update: fix simplify_network, fix Corsica, updated build_osm_network to include lines overpassing nodes.

* remove config backup

* Bug fix: Carrier type of all supernodes corrected to 'AC'

* Bug fix: Carrier type of all supernodes corrected to 'AC'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated rules and base_network for compatibility with TYNDP projects.

* Updated Zenodo repository and prebuilt network to include 150 kV HVDC connections.

* Removed outdated config backup.

* Implemented all comments from PR #1079. Cleaned up OSM implementation.

* Bug fix: Added all voltages, 200 kV-750 kV, to default config.

* Cleaning and bugfixes.

* Updated Zenodo repository to https://zenodo.org/records/13358976. Added converter voltages, 'underground' property for DC lines/cables, and included Konti-Skan HVDC (DK-SE). Added compatibility with https://github.com/PyPSA/pypsa-eur/pull/1079 and https://github.com/PyPSA/pypsa-eur/pull/1085

* Apply suggestions from code review

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* simplify_network: handle complicated transformer topologies

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* syntax fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Fabian Neumann <fabian.neumann@outlook.de>
2024-08-22 15:01:20 +02:00

699 lines
22 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
# coding: utf-8
"""
Lifts electrical transmission network to a single 380 kV voltage layer, removes
dead-ends of the network, and reduces multi-hop HVDC connections to a single
link.
Relevant Settings
-----------------
.. code:: yaml
clustering:
simplify_network:
cluster_network:
aggregation_strategies:
costs:
year:
version:
fill_values:
marginal_cost:
capital_cost:
electricity:
max_hours:
lines:
length_factor:
links:
p_max_pu:
solving:
solver:
name:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`costs_cf`, :ref:`electricity_cf`, :ref:`renewable_cf`,
:ref:`lines_cf`, :ref:`links_cf`, :ref:`solving_cf`
Inputs
------
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
- ``resources/regions_onshore.geojson``: confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: confer :ref:`busregions`
- ``networks/elec.nc``: confer :ref:`electricity`
Outputs
-------
- ``resources/regions_onshore_elec_s{simpl}.geojson``:
.. image:: img/regions_onshore_elec_s.png
:scale: 33 %
- ``resources/regions_offshore_elec_s{simpl}.geojson``:
.. image:: img/regions_offshore_elec_s .png
:scale: 33 %
- ``resources/busmap_elec_s{simpl}.csv``: Mapping of buses from ``networks/elec.nc`` to ``networks/elec_s{simpl}.nc``;
- ``networks/elec_s{simpl}.nc``:
.. image:: img/elec_s.png
:scale: 33 %
Description
-----------
The rule :mod:`simplify_network` does up to four things:
1. Create an equivalent transmission network in which all voltage levels are mapped to the 380 kV level by the function ``simplify_network(...)``.
2. DC only sub-networks that are connected at only two buses to the AC network are reduced to a single representative link in the function ``simplify_links(...)``. The components attached to buses in between are moved to the nearest endpoint. The grid connection cost of offshore wind generators are added to the capital costs of the generator.
3. Stub lines and links, i.e. dead-ends of the network, are sequentially removed from the network in the function ``remove_stubs(...)``. Components are moved along.
4. Optionally, if an integer were provided for the wildcard ``{simpl}`` (e.g. ``networks/elec_s500.nc``), the network is clustered to this number of clusters with the routines from the ``cluster_network`` rule with the function ``cluster_network.cluster(...)``. This step is usually skipped!
"""
import logging
from functools import reduce
import geopandas as gpd
import numpy as np
import pandas as pd
import pypsa
import scipy as sp
from _helpers import configure_logging, set_scenario_config, update_p_nom_max
from add_electricity import load_costs
from base_network import append_bus_shapes
from cluster_network import cluster_regions, clustering_for_n_clusters
from pypsa.clustering.spatial import (
aggregateoneport,
busmap_by_stubs,
get_clustering_from_busmap,
)
from pypsa.io import import_components_from_dataframe, import_series_from_dataframe
from scipy.sparse.csgraph import connected_components, dijkstra
logger = logging.getLogger(__name__)
def simplify_network_to_380(n, linetype_380):
"""
Fix all lines to a voltage level of 380 kV and remove all transformers.
The function preserves the transmission capacity for each line while
updating its voltage level, line type and number of parallel bundles
(num_parallel).
Transformers are removed and connected components are moved from
their starting bus to their ending bus. The corresponding starting
buses are removed as well.
"""
logger.info("Mapping all network lines onto a single 380kV layer")
n.buses["v_nom"] = 380.0
linetype_380 = n.lines["type"].mode()[0]
n.lines["type"] = linetype_380
n.lines["v_nom"] = 380
n.lines["i_nom"] = n.line_types.i_nom[linetype_380]
n.lines["num_parallel"] = n.lines.eval("s_nom / (sqrt(3) * v_nom * i_nom)")
trafo_map = pd.Series(n.transformers.bus1.values, n.transformers.bus0.values)
trafo_map = trafo_map[~trafo_map.index.duplicated(keep="first")]
while (several_trafo_b := trafo_map.isin(trafo_map.index)).any():
trafo_map[several_trafo_b] = trafo_map[several_trafo_b].map(trafo_map)
missing_buses_i = n.buses.index.difference(trafo_map.index)
missing = pd.Series(missing_buses_i, missing_buses_i)
trafo_map = pd.concat([trafo_map, missing])
for c in n.one_port_components | n.branch_components:
df = n.df(c)
for col in df.columns:
if col.startswith("bus"):
df[col] = df[col].map(trafo_map)
n.mremove("Transformer", n.transformers.index)
n.mremove("Bus", n.buses.index.difference(trafo_map))
return n, trafo_map
def _prepare_connection_costs_per_link(n, costs, renewable_carriers, length_factor):
if n.links.empty:
return {}
return {
tech: (
n.links.length
* length_factor
* (
n.links.underwater_fraction
* costs.at[tech + "-connection-submarine", "capital_cost"]
+ (1.0 - n.links.underwater_fraction)
* costs.at[tech + "-connection-underground", "capital_cost"]
)
)
for tech in renewable_carriers
if tech.startswith("offwind")
}
def _compute_connection_costs_to_bus(
n,
busmap,
costs,
renewable_carriers,
length_factor,
connection_costs_per_link=None,
buses=None,
):
if connection_costs_per_link is None:
connection_costs_per_link = _prepare_connection_costs_per_link(
n, costs, renewable_carriers, length_factor
)
if buses is None:
buses = busmap.index[busmap.index != busmap.values]
connection_costs_to_bus = pd.DataFrame(index=buses)
for tech in connection_costs_per_link:
adj = n.adjacency_matrix(
weights=pd.concat(
dict(
Link=connection_costs_per_link[tech].reindex(n.links.index),
Line=pd.Series(0.0, n.lines.index),
)
)
)
costs_between_buses = dijkstra(
adj, directed=False, indices=n.buses.index.get_indexer(buses)
)
connection_costs_to_bus[tech] = costs_between_buses[
np.arange(len(buses)), n.buses.index.get_indexer(busmap.loc[buses])
]
return connection_costs_to_bus
def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus):
connection_costs = {}
for tech in connection_costs_to_bus:
tech_b = n.generators.carrier == tech
costs = (
n.generators.loc[tech_b, "bus"]
.map(connection_costs_to_bus[tech])
.loc[lambda s: s > 0]
)
if not costs.empty:
n.generators.loc[costs.index, "capital_cost"] += costs
logger.info(
"Displacing {} generator(s) and adding connection costs to capital_costs: {} ".format(
tech,
", ".join(
"{:.0f} Eur/MW/a for `{}`".format(d, b)
for b, d in costs.items()
),
)
)
connection_costs[tech] = costs
def _aggregate_and_move_components(
n,
busmap,
connection_costs_to_bus,
aggregate_one_ports={"Load", "StorageUnit"},
aggregation_strategies=dict(),
exclude_carriers=None,
):
def replace_components(n, c, df, pnl):
n.mremove(c, n.df(c).index)
import_components_from_dataframe(n, df, c)
for attr, df in pnl.items():
if not df.empty:
import_series_from_dataframe(n, df, c, attr)
_adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus)
generator_strategies = aggregation_strategies["generators"]
carriers = set(n.generators.carrier) - set(exclude_carriers)
generators, generators_pnl = aggregateoneport(
n,
busmap,
"Generator",
carriers=carriers,
custom_strategies=generator_strategies,
)
replace_components(n, "Generator", generators, generators_pnl)
for one_port in aggregate_one_ports:
df, pnl = aggregateoneport(n, busmap, component=one_port)
replace_components(n, one_port, df, pnl)
buses_to_del = n.buses.index.difference(busmap)
n.mremove("Bus", buses_to_del)
for c in n.branch_components:
df = n.df(c)
n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)])
def simplify_links(
n,
costs,
renewables,
length_factor,
p_max_pu,
exclude_carriers,
aggregation_strategies=dict(),
):
## Complex multi-node links are folded into end-points
logger.info("Simplifying connected link components")
if n.links.empty:
return n, n.buses.index.to_series()
# Determine connected link components, ignore all links but DC
adjacency_matrix = n.adjacency_matrix(
branch_components=["Link"],
weights=dict(Link=(n.links.carrier == "DC").astype(float)),
)
_, labels = connected_components(adjacency_matrix, directed=False)
labels = pd.Series(labels, n.buses.index)
# Only span graph over the DC link components
G = n.graph(branch_components=["Link"])
def split_links(nodes, added_supernodes):
nodes = frozenset(nodes)
seen = set()
# Supernodes are endpoints of links, identified by having lass then two neighbours or being an AC Bus
# An example for the latter is if two different links are connected to the same AC bus.
supernodes = {
m
for m in nodes
if (
(len(G.adj[m]) < 2 or (set(G.adj[m]) - nodes))
or (n.buses.loc[m, "carrier"] == "AC")
or (m in added_supernodes)
)
}
for u in supernodes:
for m, ls in G.adj[u].items():
if m not in nodes or m in seen:
continue
buses = [u, m]
links = [list(ls)] # [name for name in ls]]
while m not in (supernodes | seen):
seen.add(m)
for m2, ls in G.adj[m].items():
if m2 in seen or m2 == u:
continue
buses.append(m2)
links.append(list(ls)) # [name for name in ls])
break
else:
# stub
break
m = m2
if m != u:
yield pd.Index((u, m)), buses, links
seen.add(u)
busmap = n.buses.index.to_series()
connection_costs_per_link = _prepare_connection_costs_per_link(
n, costs, renewables, length_factor
)
connection_costs_to_bus = pd.DataFrame(
0.0, index=n.buses.index, columns=list(connection_costs_per_link)
)
node_corsica = find_closest_bus(
n,
x=9.44802,
y=42.52842,
tol=2000, # Tolerance needed to only return the bus if the region is actually modelled
)
added_supernodes = []
if node_corsica is not None:
added_supernodes.append(node_corsica)
for lbl in labels.value_counts().loc[lambda s: s > 2].index:
for b, buses, links in split_links(
labels.index[labels == lbl], added_supernodes
):
if len(buses) <= 2:
continue
logger.debug("nodes = {}".format(labels.index[labels == lbl]))
logger.debug("b = {}\nbuses = {}\nlinks = {}".format(b, buses, links))
m = sp.spatial.distance_matrix(
n.buses.loc[b, ["x", "y"]], n.buses.loc[buses[1:-1], ["x", "y"]]
)
busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]]
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(
n,
busmap,
costs,
renewables,
length_factor,
connection_costs_per_link,
buses,
)
all_links = [i for _, i in sum(links, [])]
lengths = n.links.loc[all_links, "length"]
name = lengths.idxmax() + "+{}".format(len(links) - 1)
params = dict(
carrier="DC",
bus0=b[0],
bus1=b[1],
length=sum(
n.links.loc[[i for _, i in l], "length"].mean() for l in links
),
p_nom=min(n.links.loc[[i for _, i in l], "p_nom"].sum() for l in links),
underwater_fraction=sum(
lengths
/ lengths.sum()
* n.links.loc[all_links, "underwater_fraction"]
),
p_max_pu=p_max_pu,
p_min_pu=-p_max_pu,
underground=False,
under_construction=False,
)
logger.info(
"Joining the links {} connecting the buses {} to simple link {}".format(
", ".join(all_links), ", ".join(buses), name
)
)
n.mremove("Link", all_links)
static_attrs = n.components["Link"]["attrs"].loc[lambda df: df.static]
for attr, default in static_attrs.default.items():
params.setdefault(attr, default)
n.links.loc[name] = pd.Series(params)
# n.add("Link", **params)
logger.debug("Collecting all components using the busmap")
# Change carrier type of all added super_nodes to "AC"
n.buses.loc[added_supernodes, "carrier"] = "AC"
_aggregate_and_move_components(
n,
busmap,
connection_costs_to_bus,
aggregation_strategies=aggregation_strategies,
exclude_carriers=exclude_carriers,
)
return n, busmap
def remove_stubs(
n,
costs,
renewable_carriers,
length_factor,
simplify_network,
aggregation_strategies=dict(),
):
logger.info("Removing stubs")
across_borders = simplify_network["remove_stubs_across_borders"]
matching_attrs = [] if across_borders else ["country"]
busmap = busmap_by_stubs(n, matching_attrs)
connection_costs_to_bus = _compute_connection_costs_to_bus(
n, busmap, costs, renewable_carriers, length_factor
)
_aggregate_and_move_components(
n,
busmap,
connection_costs_to_bus,
aggregation_strategies=aggregation_strategies,
exclude_carriers=simplify_network["exclude_carriers"],
)
return n, busmap
def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None):
# can be used to aggregate a selection of buses to electrically closest neighbors
# if no buses are given, nodes that are no substations or without offshore connection are aggregated
if buses_i is None:
logger.info(
"Aggregating buses that are no substations or have no valid offshore connection"
)
buses_i = list(set(n.buses.index) - set(n.generators.bus) - set(n.loads.bus))
weight = pd.concat(
{
"Line": n.lines.length / n.lines.s_nom.clip(1e-3),
"Link": n.links.length / n.links.p_nom.clip(1e-3),
}
)
adj = n.adjacency_matrix(branch_components=["Line", "Link"], weights=weight)
bus_indexer = n.buses.index.get_indexer(buses_i)
dist = pd.DataFrame(
dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index
)
dist[buses_i] = (
np.inf
) # bus in buses_i should not be assigned to different bus in buses_i
for c in n.buses.country.unique():
incountry_b = n.buses.country == c
dist.loc[incountry_b, ~incountry_b] = np.inf
busmap = n.buses.index.to_series()
busmap.loc[buses_i] = dist.idxmin(1)
line_strategies = aggregation_strategies.get("lines", dict())
generator_strategies = aggregation_strategies.get("generators", dict())
one_port_strategies = aggregation_strategies.get("one_ports", dict())
clustering = get_clustering_from_busmap(
n,
busmap,
aggregate_generators_weighted=True,
aggregate_generators_carriers=None,
aggregate_one_ports=["Load", "StorageUnit"],
line_length_factor=1.0,
line_strategies=line_strategies,
generator_strategies=generator_strategies,
one_port_strategies=one_port_strategies,
scale_link_capital_costs=False,
)
return clustering.network, busmap
def cluster(
n,
n_clusters,
focus_weights,
solver_name,
algorithm="hac",
feature=None,
aggregation_strategies=dict(),
):
logger.info(f"Clustering to {n_clusters} buses")
clustering = clustering_for_n_clusters(
n,
n_clusters,
custom_busmap=False,
aggregation_strategies=aggregation_strategies,
solver_name=solver_name,
algorithm=algorithm,
feature=feature,
focus_weights=focus_weights,
)
return clustering.network, clustering.busmap
def find_closest_bus(n, x, y, tol=2000):
"""
Find the index of the closest bus to the given coordinates within a specified tolerance.
Parameters:
n (pypsa.Network): The network object.
x (float): The x-coordinate (longitude) of the target location.
y (float): The y-coordinate (latitude) of the target location.
tol (float): The distance tolerance in meters. Default is 2000 meters.
Returns:
int: The index of the closest bus to the target location within the tolerance.
Returns None if no bus is within the tolerance.
"""
# Conversion factors
meters_per_degree_lat = 111139 # Meters per degree of latitude
meters_per_degree_lon = 111139 * np.cos(
np.radians(y)
) # Meters per degree of longitude at the given latitude
x0 = np.array(n.buses.x)
y0 = np.array(n.buses.y)
# Calculate distances in meters
dist = np.sqrt(
((x - x0) * meters_per_degree_lon) ** 2
+ ((y - y0) * meters_per_degree_lat) ** 2
)
# Find the closest bus within the tolerance
min_dist = dist.min()
if min_dist <= tol:
return n.buses.index[dist.argmin()]
else:
return None
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("simplify_network", simpl="", run="all")
configure_logging(snakemake)
set_scenario_config(snakemake)
params = snakemake.params
solver_name = snakemake.config["solving"]["solver"]["name"]
n = pypsa.Network(snakemake.input.network)
Nyears = n.snapshot_weightings.objective.sum() / 8760
# remove integer outputs for compatibility with PyPSA v0.26.0
n.generators.drop("n_mod", axis=1, inplace=True, errors="ignore")
linetype_380 = snakemake.config["lines"]["types"][380]
n, trafo_map = simplify_network_to_380(n, linetype_380)
technology_costs = load_costs(
snakemake.input.tech_costs,
params.costs,
params.max_hours,
Nyears,
)
n, simplify_links_map = simplify_links(
n,
technology_costs,
params.renewable_carriers,
params.length_factor,
params.p_max_pu,
params.simplify_network["exclude_carriers"],
params.aggregation_strategies,
)
busmaps = [trafo_map, simplify_links_map]
if params.simplify_network["remove_stubs"]:
n, stub_map = remove_stubs(
n,
technology_costs,
params.renewable_carriers,
params.length_factor,
params.simplify_network,
aggregation_strategies=params.aggregation_strategies,
)
busmaps.append(stub_map)
if params.simplify_network["to_substations"]:
n, substation_map = aggregate_to_substations(n, params.aggregation_strategies)
busmaps.append(substation_map)
# treatment of outliers (nodes without a profile for considered carrier):
# all nodes that have no profile of the given carrier are being aggregated to closest neighbor
if params.simplify_network["algorithm"] == "hac":
carriers = params.simplify_network["feature"].split("-")[0].split("+")
for carrier in carriers:
buses_i = list(
set(n.buses.index) - set(n.generators.query("carrier == @carrier").bus)
)
logger.info(
f"clustering preparation (hac): aggregating {len(buses_i)} buses of type {carrier}."
)
n, busmap_hac = aggregate_to_substations(
n, params.aggregation_strategies, buses_i
)
busmaps.append(busmap_hac)
# some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed
# and are lost when clustering (for example with the simpl wildcard), we remove them for consistency:
remove = [
"symbol",
"tags",
"under_construction",
"onshore_bus",
"substation_lv",
"substation_off",
"geometry",
"underground",
"project_status",
]
n.buses.drop(remove, axis=1, inplace=True, errors="ignore")
n.lines.drop(remove, axis=1, errors="ignore", inplace=True)
if snakemake.wildcards.simpl:
shapes = n.shapes
n, cluster_map = cluster(
n,
int(snakemake.wildcards.simpl),
params.focus_weights,
solver_name,
params.simplify_network["algorithm"],
params.simplify_network["feature"],
params.aggregation_strategies,
)
n.shapes = shapes
busmaps.append(cluster_map)
update_p_nom_max(n)
busmap_s = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
busmap_s.to_csv(snakemake.output.busmap)
for which in ["regions_onshore", "regions_offshore"]:
regions = gpd.read_file(snakemake.input[which])
clustered_regions = cluster_regions(busmaps, regions)
clustered_regions.to_file(snakemake.output[which])
append_bus_shapes(n, clustered_regions, type=which.split("_")[1])
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output.network)