pypsa-eur/scripts/build_monthly_prices.py
2023-05-16 16:16:36 +02:00

117 lines
3.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 16 10:37:35 2023
This script extracts monthly fuel prices of oil, gas, coal and lignite,
as well as CO2 prices
Inputs
------
- ``data/energy-price-trends-xlsx-5619002.xlsx``: energy price index of fossil fuels
- ``emission-spot-primary-market-auction-report-2019-data.xls``: CO2 Prices spot primary auction
Outputs
-------
- ``data/validation/monthly_fuel_price.csv``
- ``data/validation/CO2_price_2019.csv``
Description
-----------
The rule :mod:`build_monthly_prices` collects monthly fuel prices and CO2 prices
and translates them from different input sources to pypsa syntax
Data sources:
[1] Fuel price index. Destatis
https://www.destatis.de/EN/Home/_node.html
[2] average annual import price (coal, gas, oil) Agora, slide 22
https://static.agora-energiewende.de/fileadmin/Projekte/2022/2022-10_DE_JAW2022/2023-02-20_Praesentation_Agora_Jahresauswertung.pdf
[3] average annual fuel price lignite, ENTSO-E
https://2020.entsos-tyndp-scenarios.eu/fuel-commodities-and-carbon-prices/
[4] CO2 Prices, Emission spot primary auction, EEX
https://www.eex.com/en/market-data/environmental-markets/eua-primary-auction-spot-download
Data was accessed at 16.5.2023
"""
import pandas as pd
import logging
from _helpers import configure_logging
logger = logging.getLogger(__name__)
validation_year = 2019
# sheet names to pypsa syntax
sheet_name_map = {"5.1 Hard coal and lignite": "coal",
"5.2 Mineral oil" : "oil",
"5.3.1 Natural gas - indices":"gas"}
# keywords in datasheet
keywords = {"coal": " GP09-051 Hard coal",
"lignite": " GP09-052 Lignite and lignite briquettes",
"oil": " GP09-0610 10 Mineral oil, crude",
"gas": "GP09-3522 24 Natural gas, when supplied to power plants"
}
# import fuel price 2015 in Eur/MWh
# source for coal, oil, gas, Agora, slide 22 [2]
# source lignite, price for 2020, scaled by price index, ENTSO-E [3]
price_2015 = {"coal": 8,
"oil": 31,
"gas": 21,
"lignite": 3.8} # 2020 3.96/1.04
def get_fuel_price():
fuel_price = pd.read_excel(snakemake.input.fuel_price_raw,
sheet_name=list(sheet_name_map.keys()))
fuel_price = {sheet_name_map[key]: value for key, value in fuel_price.items()
if key in sheet_name_map}
# lignite and hard coal are on the same sheet
fuel_price["lignite"] = fuel_price["coal"]
def extract_df(sheet, keyword):
# Create a DatetimeIndex for the first day of each month of a given year
dti = pd.date_range(start=f'{validation_year}-01-01',
end=f'{validation_year}-12-01', freq='MS')
# Extract month names
month_list = dti.month
start = fuel_price[sheet].index[(fuel_price[sheet] == keyword).any(axis=1)]
df = fuel_price[sheet].loc[start[0]:start[0]+18,:]
df.dropna(axis=0, inplace=True)
df.iloc[:,0] = df.iloc[:,0].apply(lambda x: int(x.replace(" ...", "")))
df.set_index(df.columns[0], inplace=True)
df = df.iloc[:, :12]
df.columns = month_list
return df
m_price = {}
for carrier, keyword in keywords.items():
df = extract_df(carrier, keyword).loc[validation_year]
m_price[carrier] = df.mul(price_2015[carrier]/100)
pd.concat(m_price, axis=1).to_csv(snakemake.output.fuel_price)
def get_co2_price():
# emission price
CO2_price = pd.read_excel(snakemake.input.co2_price_raw, index_col=1,
header=5)
CO2_price["Auction Price €/tCO2"].to_csv(snakemake.output.co2_price)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_monthly_prices")
configure_logging(snakemake)
get_fuel_price()
get_co2_price()