pypsa-eur/rules/build_electricity.smk
2024-05-13 10:04:42 +02:00

572 lines
20 KiB
Plaintext

# SPDX-FileCopyrightText: : 2023-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
if config["enable"].get("prepare_links_p_nom", False):
rule prepare_links_p_nom:
output:
"data/links_p_nom.csv",
log:
logs("prepare_links_p_nom.log"),
threads: 1
resources:
mem_mb=1500,
conda:
"../envs/environment.yaml"
script:
"../scripts/prepare_links_p_nom.py"
rule build_electricity_demand:
params:
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
countries=config_provider("countries"),
load=config_provider("load"),
input:
reported=ancient("data/electricity_demand_raw.csv"),
synthetic=lambda w: (
ancient("data/load_synthetic_raw.csv")
if config_provider("load", "supplement_synthetic")(w)
else []
),
output:
resources("electricity_demand.csv"),
log:
logs("build_electricity_demand.log"),
resources:
mem_mb=5000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_electricity_demand.py"
rule build_powerplants:
params:
powerplants_filter=config_provider("electricity", "powerplants_filter"),
custom_powerplants=config_provider("electricity", "custom_powerplants"),
everywhere_powerplants=config_provider("electricity", "everywhere_powerplants"),
countries=config_provider("countries"),
input:
base_network=resources("networks/base.nc"),
custom_powerplants="data/custom_powerplants.csv",
output:
resources("powerplants.csv"),
log:
logs("build_powerplants.log"),
threads: 1
resources:
mem_mb=5000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_powerplants.py"
rule base_network:
params:
countries=config_provider("countries"),
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
lines=config_provider("lines"),
links=config_provider("links"),
transformers=config_provider("transformers"),
input:
eg_buses="data/entsoegridkit/buses.csv",
eg_lines="data/entsoegridkit/lines.csv",
eg_links="data/entsoegridkit/links.csv",
eg_converters="data/entsoegridkit/converters.csv",
eg_transformers="data/entsoegridkit/transformers.csv",
parameter_corrections="data/parameter_corrections.yaml",
links_p_nom="data/links_p_nom.csv",
links_tyndp="data/links_tyndp.csv",
country_shapes=resources("country_shapes.geojson"),
offshore_shapes=resources("offshore_shapes.geojson"),
europe_shape=resources("europe_shape.geojson"),
output:
base_network=resources("networks/base.nc"),
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
log:
logs("base_network.log"),
benchmark:
benchmarks("base_network")
threads: 1
resources:
mem_mb=1500,
conda:
"../envs/environment.yaml"
script:
"../scripts/base_network.py"
rule build_shapes:
params:
countries=config_provider("countries"),
input:
naturalearth=ancient("data/bundle/naturalearth/ne_10m_admin_0_countries.shp"),
eez=ancient("data/bundle/eez/World_EEZ_v8_2014.shp"),
nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"),
nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"),
ch_cantons=ancient("data/ch_cantons.csv"),
ch_popgdp=ancient("data/bundle/je-e-21.03.02.xls"),
output:
country_shapes=resources("country_shapes.geojson"),
offshore_shapes=resources("offshore_shapes.geojson"),
europe_shape=resources("europe_shape.geojson"),
nuts3_shapes=resources("nuts3_shapes.geojson"),
log:
logs("build_shapes.log"),
threads: 1
resources:
mem_mb=1500,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_shapes.py"
if config["enable"].get("build_cutout", False):
rule build_cutout:
params:
snapshots=config_provider("snapshots"),
cutouts=config_provider("atlite", "cutouts"),
input:
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
output:
protected("cutouts/" + CDIR + "{cutout}.nc"),
log:
logs(CDIR + "build_cutout/{cutout}.log"),
benchmark:
"benchmarks/" + CDIR + "build_cutout_{cutout}"
threads: config["atlite"].get("nprocesses", 4)
resources:
mem_mb=config["atlite"].get("nprocesses", 4) * 1000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_cutout.py"
rule build_ship_raster:
input:
ship_density="data/shipdensity_global.zip",
cutout=lambda w: "cutouts/"
+ CDIR
+ config_provider("atlite", "default_cutout")(w)
+ ".nc",
output:
resources("shipdensity_raster.tif"),
log:
logs("build_ship_raster.log"),
resources:
mem_mb=5000,
benchmark:
benchmarks("build_ship_raster")
conda:
"../envs/environment.yaml"
script:
"../scripts/build_ship_raster.py"
rule determine_availability_matrix_MD_UA:
input:
copernicus="data/Copernicus_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
wdpa="data/WDPA.gpkg",
wdpa_marine="data/WDPA_WDOECM_marine.gpkg",
gebco=lambda w: (
"data/bundle/gebco/GEBCO_2014_2D.nc"
if config_provider("renewable", w.technology)(w).get("max_depth")
else []
),
ship_density=lambda w: (
resources("shipdensity_raster.tif")
if "ship_threshold" in config_provider("renewable", w.technology)(w).keys()
else []
),
country_shapes=resources("country_shapes.geojson"),
offshore_shapes=resources("offshore_shapes.geojson"),
regions=lambda w: (
resources("regions_onshore.geojson")
if w.technology in ("onwind", "solar")
else resources("regions_offshore.geojson")
),
cutout=lambda w: "cutouts/"
+ CDIR
+ config_provider("renewable", w.technology, "cutout")(w)
+ ".nc",
output:
availability_matrix=resources("availability_matrix_MD-UA_{technology}.nc"),
availability_map=resources("availability_matrix_MD-UA_{technology}.png"),
log:
logs("determine_availability_matrix_MD_UA_{technology}.log"),
threads: config["atlite"].get("nprocesses", 4)
resources:
mem_mb=config["atlite"].get("nprocesses", 4) * 5000,
conda:
"../envs/environment.yaml"
script:
"../scripts/determine_availability_matrix_MD_UA.py"
# Optional input when having Ukraine (UA) or Moldova (MD) in the countries list
def input_ua_md_availability_matrix(w):
countries = set(config_provider("countries")(w))
if {"UA", "MD"}.intersection(countries):
return {
"availability_matrix_MD_UA": resources(
"availability_matrix_MD-UA_{technology}.nc"
)
}
return {}
rule build_renewable_profiles:
params:
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
renewable=config_provider("renewable"),
input:
unpack(input_ua_md_availability_matrix),
base_network=resources("networks/base.nc"),
corine=ancient("data/bundle/corine/g250_clc06_V18_5.tif"),
natura=lambda w: (
"data/bundle/natura/natura.tiff"
if config_provider("renewable", w.technology, "natura")(w)
else []
),
luisa=lambda w: (
"data/LUISA_basemap_020321_50m.tif"
if config_provider("renewable", w.technology, "luisa")(w)
else []
),
gebco=ancient(
lambda w: (
"data/bundle/gebco/GEBCO_2014_2D.nc"
if (
config_provider("renewable", w.technology)(w).get("max_depth")
or config_provider("renewable", w.technology)(w).get("min_depth")
)
else []
)
),
ship_density=lambda w: (
resources("shipdensity_raster.tif")
if "ship_threshold" in config_provider("renewable", w.technology)(w).keys()
else []
),
country_shapes=resources("country_shapes.geojson"),
offshore_shapes=resources("offshore_shapes.geojson"),
regions=lambda w: (
resources("regions_onshore.geojson")
if w.technology in ("onwind", "solar")
else resources("regions_offshore.geojson")
),
cutout=lambda w: "cutouts/"
+ CDIR
+ config_provider("renewable", w.technology, "cutout")(w)
+ ".nc",
output:
profile=resources("profile_{technology}.nc"),
log:
logs("build_renewable_profile_{technology}.log"),
benchmark:
benchmarks("build_renewable_profiles_{technology}")
threads: config["atlite"].get("nprocesses", 4)
resources:
mem_mb=config["atlite"].get("nprocesses", 4) * 5000,
wildcard_constraints:
technology="(?!hydro).*", # Any technology other than hydro
conda:
"../envs/environment.yaml"
script:
"../scripts/build_renewable_profiles.py"
rule build_monthly_prices:
input:
co2_price_raw="data/validation/emission-spot-primary-market-auction-report-2019-data.xls",
fuel_price_raw="data/validation/energy-price-trends-xlsx-5619002.xlsx",
output:
co2_price=resources("co2_price.csv"),
fuel_price=resources("monthly_fuel_price.csv"),
log:
logs("build_monthly_prices.log"),
threads: 1
resources:
mem_mb=5000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_monthly_prices.py"
rule build_hydro_profile:
params:
hydro=config_provider("renewable", "hydro"),
countries=config_provider("countries"),
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
input:
country_shapes=resources("country_shapes.geojson"),
eia_hydro_generation="data/eia_hydro_annual_generation.csv",
eia_hydro_capacity="data/eia_hydro_annual_capacity.csv",
era5_runoff="data/era5-annual-runoff-per-country.csv",
cutout=lambda w: f"cutouts/"
+ CDIR
+ config_provider("renewable", "hydro", "cutout")(w)
+ ".nc",
output:
profile=resources("profile_hydro.nc"),
log:
logs("build_hydro_profile.log"),
resources:
mem_mb=5000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_hydro_profile.py"
rule build_line_rating:
params:
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
input:
base_network=resources("networks/base.nc"),
cutout=lambda w: "cutouts/"
+ CDIR
+ config_provider("lines", "dynamic_line_rating", "cutout")(w)
+ ".nc",
output:
output=resources("networks/line_rating.nc"),
log:
logs("build_line_rating.log"),
benchmark:
benchmarks("build_line_rating")
threads: config["atlite"].get("nprocesses", 4)
resources:
mem_mb=config["atlite"].get("nprocesses", 4) * 1000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_line_rating.py"
def input_profile_tech(w):
return {
f"profile_{tech}": resources(f"profile_{tech}.nc")
for tech in config_provider("electricity", "renewable_carriers")(w)
}
def input_conventional(w):
return {
f"conventional_{carrier}_{attr}": fn
for carrier, d in config_provider("conventional", default={None: {}})(w).items()
if carrier in config_provider("electricity", "conventional_carriers")(w)
for attr, fn in d.items()
if str(fn).startswith("data/")
}
rule add_electricity:
params:
length_factor=config_provider("lines", "length_factor"),
scaling_factor=config_provider("load", "scaling_factor"),
countries=config_provider("countries"),
snapshots=config_provider("snapshots"),
renewable=config_provider("renewable"),
electricity=config_provider("electricity"),
conventional=config_provider("conventional"),
costs=config_provider("costs"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
input:
unpack(input_profile_tech),
unpack(input_conventional),
base_network=resources("networks/base.nc"),
line_rating=lambda w: (
resources("networks/line_rating.nc")
if config_provider("lines", "dynamic_line_rating", "activate")(w)
else resources("networks/base.nc")
),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
),
regions=resources("regions_onshore.geojson"),
powerplants=resources("powerplants.csv"),
hydro_capacities=ancient("data/hydro_capacities.csv"),
geth_hydro_capacities="data/geth2015_hydro_capacities.csv",
unit_commitment="data/unit_commitment.csv",
fuel_price=lambda w: (
resources("monthly_fuel_price.csv")
if config_provider("conventional", "dynamic_fuel_price")(w)
else []
),
load=resources("electricity_demand.csv"),
nuts3_shapes=resources("nuts3_shapes.geojson"),
ua_md_gdp="data/GDP_PPP_30arcsec_v3_mapped_default.csv",
output:
resources("networks/elec.nc"),
log:
logs("add_electricity.log"),
benchmark:
benchmarks("add_electricity")
threads: 1
resources:
mem_mb=10000,
conda:
"../envs/environment.yaml"
script:
"../scripts/add_electricity.py"
rule simplify_network:
params:
simplify_network=config_provider("clustering", "simplify_network"),
aggregation_strategies=config_provider(
"clustering", "aggregation_strategies", default={}
),
focus_weights=config_provider("clustering", "focus_weights", default=None),
renewable_carriers=config_provider("electricity", "renewable_carriers"),
max_hours=config_provider("electricity", "max_hours"),
length_factor=config_provider("lines", "length_factor"),
p_max_pu=config_provider("links", "p_max_pu", default=1.0),
costs=config_provider("costs"),
input:
network=resources("networks/elec.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
),
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
output:
network=resources("networks/elec_s{simpl}.nc"),
regions_onshore=resources("regions_onshore_elec_s{simpl}.geojson"),
regions_offshore=resources("regions_offshore_elec_s{simpl}.geojson"),
busmap=resources("busmap_elec_s{simpl}.csv"),
log:
logs("simplify_network/elec_s{simpl}.log"),
benchmark:
benchmarks("simplify_network/elec_s{simpl}")
threads: 1
resources:
mem_mb=12000,
conda:
"../envs/environment.yaml"
script:
"../scripts/simplify_network.py"
rule cluster_network:
params:
cluster_network=config_provider("clustering", "cluster_network"),
aggregation_strategies=config_provider(
"clustering", "aggregation_strategies", default={}
),
custom_busmap=config_provider("enable", "custom_busmap", default=False),
focus_weights=config_provider("clustering", "focus_weights", default=None),
renewable_carriers=config_provider("electricity", "renewable_carriers"),
conventional_carriers=config_provider(
"electricity", "conventional_carriers", default=[]
),
max_hours=config_provider("electricity", "max_hours"),
length_factor=config_provider("lines", "length_factor"),
costs=config_provider("costs"),
input:
network=resources("networks/elec_s{simpl}.nc"),
regions_onshore=resources("regions_onshore_elec_s{simpl}.geojson"),
regions_offshore=resources("regions_offshore_elec_s{simpl}.geojson"),
busmap=ancient(resources("busmap_elec_s{simpl}.csv")),
custom_busmap=lambda w: (
"data/custom_busmap_elec_s{simpl}_{clusters}.csv"
if config_provider("enable", "custom_busmap", default=False)(w)
else []
),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
),
output:
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"),
busmap=resources("busmap_elec_s{simpl}_{clusters}.csv"),
linemap=resources("linemap_elec_s{simpl}_{clusters}.csv"),
log:
logs("cluster_network/elec_s{simpl}_{clusters}.log"),
benchmark:
benchmarks("cluster_network/elec_s{simpl}_{clusters}")
threads: 1
resources:
mem_mb=10000,
conda:
"../envs/environment.yaml"
script:
"../scripts/cluster_network.py"
rule add_extra_components:
params:
extendable_carriers=config_provider("electricity", "extendable_carriers"),
max_hours=config_provider("electricity", "max_hours"),
costs=config_provider("costs"),
input:
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
),
output:
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
log:
logs("add_extra_components/elec_s{simpl}_{clusters}.log"),
benchmark:
benchmarks("add_extra_components/elec_s{simpl}_{clusters}_ec")
threads: 1
resources:
mem_mb=4000,
conda:
"../envs/environment.yaml"
script:
"../scripts/add_extra_components.py"
rule prepare_network:
params:
time_resolution=config_provider("clustering", "temporal", "resolution_elec"),
links=config_provider("links"),
lines=config_provider("lines"),
co2base=config_provider("electricity", "co2base"),
co2limit_enable=config_provider("electricity", "co2limit_enable", default=False),
co2limit=config_provider("electricity", "co2limit"),
gaslimit_enable=config_provider("electricity", "gaslimit_enable", default=False),
gaslimit=config_provider("electricity", "gaslimit"),
max_hours=config_provider("electricity", "max_hours"),
costs=config_provider("costs"),
adjustments=config_provider("adjustments", "electricity"),
autarky=config_provider("electricity", "autarky", default={}),
drop_leap_day=config_provider("enable", "drop_leap_day"),
input:
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
),
co2_price=lambda w: resources("co2_price.csv") if "Ept" in w.opts else [],
output:
resources("networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"),
log:
logs("prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log"),
benchmark:
(benchmarks("prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"))
threads: 1
resources:
mem_mb=4000,
conda:
"../envs/environment.yaml"
script:
"../scripts/prepare_network.py"