51 lines
1.6 KiB
Python
51 lines
1.6 KiB
Python
|
|
import geopandas as gpd
|
|
import atlite
|
|
import pandas as pd
|
|
import xarray as xr
|
|
import scipy as sp
|
|
import helper
|
|
|
|
if 'snakemake' not in globals():
|
|
from vresutils import Dict
|
|
import yaml
|
|
snakemake = Dict()
|
|
with open('config.yaml') as f:
|
|
snakemake.config = yaml.safe_load(f)
|
|
snakemake.input = Dict()
|
|
snakemake.output = Dict()
|
|
|
|
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
|
|
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
|
|
|
|
|
|
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
|
cutout_dir=snakemake.config['atlite']['cutout_dir'],
|
|
**params)
|
|
|
|
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
|
|
|
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
|
|
|
helper.clean_invalid_geometries(clustered_busregions)
|
|
|
|
I = cutout.indicatormatrix(clustered_busregions)
|
|
|
|
|
|
for item in ["total","rural","urban"]:
|
|
|
|
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
|
|
|
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
|
|
nonzero_sum = M.sum(axis=0, keepdims=True)
|
|
nonzero_sum[nonzero_sum == 0.] = 1.
|
|
M_tilde = M/nonzero_sum
|
|
|
|
temp_air = cutout.temperature(matrix=M_tilde.T,index=clustered_busregions.index)
|
|
|
|
temp_air.to_netcdf(snakemake.output["temp_air_"+item])
|
|
|
|
temp_soil = cutout.soil_temperature(matrix=M_tilde.T,index=clustered_busregions.index)
|
|
|
|
temp_soil.to_netcdf(snakemake.output["temp_soil_"+item])
|