pypsa-eur/scripts/build_daily_heat_demand.py
2024-03-14 15:15:56 +01:00

63 lines
1.7 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build heat demand time series using heating degree day (HDD) approximation.
"""
import atlite
import geopandas as gpd
import numpy as np
import pandas as pd
import xarray as xr
from _helpers import get_snapshots, set_scenario_config
from dask.distributed import Client, LocalCluster
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_daily_heat_demands",
scope="total",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
cutout_name = snakemake.input.cutout
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
daily = get_snapshots(
snakemake.params.snapshots,
snakemake.params.drop_leap_day,
freq="D",
)
cutout = atlite.Cutout(cutout_name).sel(time=time)
clustered_regions = (
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
)
I = cutout.indicatormatrix(clustered_regions) # noqa: E741
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
stacked_pop = pop_layout.stack(spatial=("y", "x"))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
heat_demand = cutout.heat_demand(
matrix=M.T,
index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False,
).sel(time=daily)
heat_demand.to_netcdf(snakemake.output.heat_demand)