36 lines
1008 B
Python
36 lines
1008 B
Python
|
|
import geopandas as gpd
|
|
import xarray as xr
|
|
import pandas as pd
|
|
import atlite
|
|
import helper
|
|
|
|
year = snakemake.wildcards.year
|
|
cutout_name = snakemake.config['atlite']['cutout_name']
|
|
if year: cutout_name = cutout_name.format(year=year)
|
|
|
|
cutout = atlite.Cutout(cutout_name,
|
|
cutout_dir=snakemake.config['atlite']['cutout_dir'])
|
|
|
|
|
|
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
|
|
|
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
|
|
|
helper.clean_invalid_geometries(clustered_busregions)
|
|
|
|
I = cutout.indicatormatrix(clustered_busregions)
|
|
|
|
|
|
items = ["total","urban","rural"]
|
|
|
|
pop = pd.DataFrame(columns=items,
|
|
index=clustered_busregions.index)
|
|
|
|
|
|
for item in items:
|
|
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
|
pop[item] = I.dot(pop_layout.stack(spatial=('y', 'x')))
|
|
|
|
pop.to_csv(snakemake.output.clustered_pop_layout)
|