pypsa-eur/scripts/prepare_perfect_foresight.py
Koen van Greevenbroek de384c7cf6 Correctly carry over time-varying data between investment periods
Previously, time-varying data in each "next" investment period was set
to the default values, implying capacity factors of 1 for renewable
generators for example.
2024-02-02 08:49:29 +01:00

554 lines
19 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Concats pypsa networks of single investment periods to one network.
"""
import logging
import re
import numpy as np
import pandas as pd
import pypsa
from _helpers import update_config_with_sector_opts
from add_existing_baseyear import add_build_year_to_new_assets
from pypsa.descriptors import expand_series
from pypsa.io import import_components_from_dataframe
from six import iterkeys
logger = logging.getLogger(__name__)
# helper functions ---------------------------------------------------
def get_missing(df, n, c):
"""
Get in network n missing assets of df for component c.
Input:
df: pandas DataFrame, static values of pypsa components
n : pypsa Network to which new assets should be added
c : string, pypsa component.list_name (e.g. "generators")
Return:
pd.DataFrame with static values of missing assets
"""
df_final = getattr(n, c)
missing_i = df.index.difference(df_final.index)
return df.loc[missing_i]
def get_social_discount(t, r=0.01):
"""
Calculate for a given time t and social discount rate r [per unit] the
social discount.
"""
return 1 / (1 + r) ** t
def get_investment_weighting(time_weighting, r=0.01):
"""
Define cost weighting.
Returns cost weightings depending on the the time_weighting
(pd.Series) and the social discountrate r
"""
end = time_weighting.cumsum()
start = time_weighting.cumsum().shift().fillna(0)
return pd.concat([start, end], axis=1).apply(
lambda x: sum(get_social_discount(t, r) for t in range(int(x[0]), int(x[1]))),
axis=1,
)
def add_year_to_constraints(n, baseyear):
"""
Add investment period to global constraints and rename index.
Parameters
----------
n : pypsa.Network
baseyear : int
year in which optimized assets are built
"""
for c in n.iterate_components(["GlobalConstraint"]):
c.df["investment_period"] = baseyear
c.df.rename(index=lambda x: x + "-" + str(baseyear), inplace=True)
def hvdc_transport_model(n):
"""
Convert AC lines to DC links for multi-decade optimisation with line
expansion.
Losses of DC links are assumed to be 3% per 1000km
"""
logger.info("Convert AC lines to DC links to perform multi-decade optimisation.")
n.madd(
"Link",
n.lines.index,
bus0=n.lines.bus0,
bus1=n.lines.bus1,
p_nom_extendable=True,
p_nom=n.lines.s_nom,
p_nom_min=n.lines.s_nom,
p_min_pu=-1,
efficiency=1 - 0.03 * n.lines.length / 1000,
marginal_cost=0,
carrier="DC",
length=n.lines.length,
capital_cost=n.lines.capital_cost,
)
# Remove AC lines
logger.info("Removing AC lines")
lines_rm = n.lines.index
n.mremove("Line", lines_rm)
# Set efficiency of all DC links to include losses depending on length
n.links.loc[n.links.carrier == "DC", "efficiency"] = (
1 - 0.03 * n.links.loc[n.links.carrier == "DC", "length"] / 1000
)
def adjust_electricity_grid(n, year, years):
"""
Add carrier to lines. Replace AC lines with DC links in case of line
expansion. Add lifetime to DC links in case of line expansion.
Parameters
----------
n : pypsa.Network
year : int
year in which optimized assets are built
years: list
investment periods
"""
n.lines["carrier"] = "AC"
links_i = n.links[n.links.carrier == "DC"].index
if n.lines.s_nom_extendable.any() or n.links.loc[links_i, "p_nom_extendable"].any():
hvdc_transport_model(n)
links_i = n.links[n.links.carrier == "DC"].index
n.links.loc[links_i, "lifetime"] = 100
if year != years[0]:
n.links.loc[links_i, "p_nom_min"] = 0
n.links.loc[links_i, "p_nom"] = 0
# --------------------------------------------------------------------
def concat_networks(years):
"""
Concat given pypsa networks and adds build_year.
Return:
n : pypsa.Network for the whole planning horizon
"""
# input paths of sector coupling networks
network_paths = [snakemake.input.brownfield_network] + [
snakemake.input[f"network_{year}"] for year in years[1:]
]
# final concatenated network
n = pypsa.Network()
# iterate over single year networks and concat to perfect foresight network
for i, network_path in enumerate(network_paths):
year = years[i]
network = pypsa.Network(network_path)
adjust_electricity_grid(network, year, years)
add_build_year_to_new_assets(network, year)
# static ----------------------------------
# (1) add buses and carriers
for component in network.iterate_components(["Bus", "Carrier"]):
df_year = component.df
# get missing assets
missing = get_missing(df_year, n, component.list_name)
import_components_from_dataframe(n, missing, component.name)
# (2) add generators, links, stores and loads
for component in network.iterate_components(
["Generator", "Link", "Store", "Load", "Line", "StorageUnit"]
):
df_year = component.df.copy()
missing = get_missing(df_year, n, component.list_name)
import_components_from_dataframe(n, missing, component.name)
# time variant --------------------------------------------------
network_sns = pd.MultiIndex.from_product([[year], network.snapshots])
snapshots = n.snapshots.drop("now", errors="ignore").union(network_sns)
n.set_snapshots(snapshots)
for component in network.iterate_components():
pnl = getattr(n, component.list_name + "_t")
for k in iterkeys(component.pnl):
pnl_year = component.pnl[k].copy().reindex(snapshots, level=1)
if pnl_year.empty and ~(component.name == "Load" and k == "p_set"):
continue
if component.name == "Load":
static_load = network.loads.loc[network.loads.p_set != 0]
static_load_t = expand_series(static_load.p_set, network_sns).T
pnl_year = pd.concat(
[pnl_year.reindex(network_sns), static_load_t], axis=1
)
columns = (pnl[k].columns.union(pnl_year.columns)).unique()
pnl[k] = pnl[k].reindex(columns=columns)
pnl[k].loc[pnl_year.index, pnl_year.columns] = pnl_year
else:
# For components that aren't new, we just extend
# time-varying data from the previous investment
# period.
if i > 0:
pnl[k].loc[(year,)] = pnl[k].loc[(years[i - 1],)].values
# Now, add time-varying data for new components.
cols = pnl_year.columns.difference(pnl[k].columns)
pnl[k] = pd.concat([pnl[k], pnl_year[cols]], axis=1)
n.snapshot_weightings.loc[year, :] = network.snapshot_weightings.values
# (3) global constraints
for component in network.iterate_components(["GlobalConstraint"]):
add_year_to_constraints(network, year)
import_components_from_dataframe(n, component.df, component.name)
# set investment periods
n.investment_periods = n.snapshots.levels[0]
# weighting of the investment period -> assuming last period same weighting as the period before
time_w = n.investment_periods.to_series().diff().shift(-1).fillna(method="ffill")
n.investment_period_weightings["years"] = time_w
# set objective weightings
objective_w = get_investment_weighting(
n.investment_period_weightings["years"], social_discountrate
)
n.investment_period_weightings["objective"] = objective_w
# all former static loads are now time-dependent -> set static = 0
n.loads["p_set"] = 0
n.loads_t.p_set.fillna(0, inplace=True)
return n
def adjust_stores(n):
"""
Make sure that stores still behave cyclic over one year and not whole
modelling horizon.
"""
# cyclic constraint
cyclic_i = n.stores[n.stores.e_cyclic].index
n.stores.loc[cyclic_i, "e_cyclic_per_period"] = True
n.stores.loc[cyclic_i, "e_cyclic"] = False
# non cyclic store assumptions
non_cyclic_store = ["co2", "co2 stored", "solid biomass", "biogas", "Li ion"]
co2_i = n.stores[n.stores.carrier.isin(non_cyclic_store)].index
n.stores.loc[co2_i, "e_cyclic_per_period"] = False
n.stores.loc[co2_i, "e_cyclic"] = False
# e_initial at beginning of each investment period
e_initial_store = ["solid biomass", "biogas"]
co2_i = n.stores[n.stores.carrier.isin(e_initial_store)].index
n.stores.loc[co2_i, "e_initial_per_period"] = True
# n.stores.loc[co2_i, "e_initial"] *= 10
# n.stores.loc[co2_i, "e_nom"] *= 10
e_initial_store = ["co2 stored"]
co2_i = n.stores[n.stores.carrier.isin(e_initial_store)].index
n.stores.loc[co2_i, "e_initial_per_period"] = True
return n
def set_phase_out(n, carrier, ct, phase_out_year):
"""
Set planned phase outs for given carrier,country (ct) and planned year of
phase out (phase_out_year).
"""
df = n.links[(n.links.carrier.isin(carrier)) & (n.links.bus1.str[:2] == ct)]
# assets which are going to be phased out before end of their lifetime
assets_i = df[df[["build_year", "lifetime"]].sum(axis=1) > phase_out_year].index
build_year = n.links.loc[assets_i, "build_year"]
# adjust lifetime
n.links.loc[assets_i, "lifetime"] = (phase_out_year - build_year).astype(float)
def set_all_phase_outs(n):
# TODO move this to a csv or to the config
planned = [
(["nuclear"], "DE", 2022),
(["nuclear"], "BE", 2025),
(["nuclear"], "ES", 2027),
(["coal", "lignite"], "DE", 2030),
(["coal", "lignite"], "ES", 2027),
(["coal", "lignite"], "FR", 2022),
(["coal", "lignite"], "GB", 2024),
(["coal", "lignite"], "IT", 2025),
(["coal", "lignite"], "DK", 2030),
(["coal", "lignite"], "FI", 2030),
(["coal", "lignite"], "HU", 2030),
(["coal", "lignite"], "SK", 2030),
(["coal", "lignite"], "GR", 2030),
(["coal", "lignite"], "IE", 2030),
(["coal", "lignite"], "NL", 2030),
(["coal", "lignite"], "RS", 2030),
]
for carrier, ct, phase_out_year in planned:
set_phase_out(n, carrier, ct, phase_out_year)
# remove assets which are already phased out
remove_i = n.links[n.links[["build_year", "lifetime"]].sum(axis=1) < years[0]].index
n.mremove("Link", remove_i)
def set_carbon_constraints(n, opts):
"""
Add global constraints for carbon emissions.
"""
budget = None
for o in opts:
# other budgets
m = re.match(r"^\d+p\d$", o, re.IGNORECASE)
if m is not None:
budget = snakemake.config["co2_budget"][m.group(0)] * 1e9
if budget is not None:
logger.info(f"add carbon budget of {budget}")
n.add(
"GlobalConstraint",
"Budget",
type="Co2Budget",
carrier_attribute="co2_emissions",
sense="<=",
constant=budget,
investment_period=n.investment_periods[-1],
)
# drop other CO2 limits
drop_i = n.global_constraints[n.global_constraints.type == "co2_limit"].index
n.mremove("GlobalConstraint", drop_i)
n.add(
"GlobalConstraint",
"carbon_neutral",
type="co2_limit",
carrier_attribute="co2_emissions",
sense="<=",
constant=0,
investment_period=n.investment_periods[-1],
)
# set minimum CO2 emission constraint to avoid too fast reduction
if "co2min" in opts:
emissions_1990 = 4.53693
emissions_2019 = 3.344096
target_2030 = 0.45 * emissions_1990
annual_reduction = (emissions_2019 - target_2030) / 11
first_year = n.snapshots.levels[0][0]
time_weightings = n.investment_period_weightings.loc[first_year, "years"]
co2min = emissions_2019 - ((first_year - 2019) * annual_reduction)
logger.info(f"add minimum emissions for {first_year} of {co2min} t CO2/a")
n.add(
"GlobalConstraint",
f"Co2Min-{first_year}",
type="Co2min",
carrier_attribute="co2_emissions",
sense=">=",
investment_period=first_year,
constant=co2min * 1e9 * time_weightings,
)
return n
def adjust_lvlimit(n):
"""
Convert global constraints for single investment period to one uniform if
all attributes stay the same.
"""
c = "GlobalConstraint"
cols = ["carrier_attribute", "sense", "constant", "type"]
glc_type = "transmission_volume_expansion_limit"
if (n.df(c)[n.df(c).type == glc_type][cols].nunique() == 1).all():
glc = n.df(c)[n.df(c).type == glc_type][cols].iloc[[0]]
glc.index = pd.Index(["lv_limit"])
remove_i = n.df(c)[n.df(c).type == glc_type].index
n.mremove(c, remove_i)
import_components_from_dataframe(n, glc, c)
return n
def adjust_CO2_glc(n):
c = "GlobalConstraint"
glc_name = "CO2Limit"
glc_type = "primary_energy"
mask = (n.df(c).index.str.contains(glc_name)) & (n.df(c).type == glc_type)
n.df(c).loc[mask, "type"] = "co2_limit"
return n
def add_H2_boilers(n):
"""
Gas boilers can be retrofitted to run with H2.
Add H2 boilers for heating for all existing gas boilers.
"""
c = "Link"
logger.info("Add H2 boilers.")
# existing gas boilers
mask = n.links.carrier.str.contains("gas boiler") & ~n.links.p_nom_extendable
gas_i = n.links[mask].index
df = n.links.loc[gas_i]
# adjust bus 0
df["bus0"] = df.bus1.map(n.buses.location) + " H2"
# rename carrier and index
df["carrier"] = df.carrier.apply(
lambda x: x.replace("gas boiler", "retrofitted H2 boiler")
)
df.rename(
index=lambda x: x.replace("gas boiler", "retrofitted H2 boiler"), inplace=True
)
# todo, costs for retrofitting
df["capital_costs"] = 100
# set existing capacity to zero
df["p_nom"] = 0
df["p_nom_extendable"] = True
# add H2 boilers to network
import_components_from_dataframe(n, df, c)
def apply_time_segmentation_perfect(
n, segments, solver_name="cbc", overwrite_time_dependent=True
):
"""
Aggregating time series to segments with different lengths.
Input:
n: pypsa Network
segments: (int) number of segments in which the typical period should be
subdivided
solver_name: (str) name of solver
overwrite_time_dependent: (bool) overwrite time dependent data of pypsa network
with typical time series created by tsam
"""
try:
import tsam.timeseriesaggregation as tsam
except ImportError:
raise ModuleNotFoundError(
"Optional dependency 'tsam' not found." "Install via 'pip install tsam'"
)
# get all time-dependent data
columns = pd.MultiIndex.from_tuples([], names=["component", "key", "asset"])
raw = pd.DataFrame(index=n.snapshots, columns=columns)
for c in n.iterate_components():
for attr, pnl in c.pnl.items():
# exclude e_min_pu which is used for SOC of EVs in the morning
if not pnl.empty and attr != "e_min_pu":
df = pnl.copy()
df.columns = pd.MultiIndex.from_product([[c.name], [attr], df.columns])
raw = pd.concat([raw, df], axis=1)
raw = raw.dropna(axis=1)
sn_weightings = {}
for year in raw.index.levels[0]:
logger.info(f"Find representative snapshots for {year}.")
raw_t = raw.loc[year]
# normalise all time-dependent data
annual_max = raw_t.max().replace(0, 1)
raw_t = raw_t.div(annual_max, level=0)
# get representative segments
agg = tsam.TimeSeriesAggregation(
raw_t,
hoursPerPeriod=len(raw_t),
noTypicalPeriods=1,
noSegments=int(segments),
segmentation=True,
solver=solver_name,
)
segmented = agg.createTypicalPeriods()
weightings = segmented.index.get_level_values("Segment Duration")
offsets = np.insert(np.cumsum(weightings[:-1]), 0, 0)
timesteps = [raw_t.index[0] + pd.Timedelta(f"{offset}h") for offset in offsets]
snapshots = pd.DatetimeIndex(timesteps)
sn_weightings[year] = pd.Series(
weightings, index=snapshots, name="weightings", dtype="float64"
)
sn_weightings = pd.concat(sn_weightings)
n.set_snapshots(sn_weightings.index)
n.snapshot_weightings = n.snapshot_weightings.mul(sn_weightings, axis=0)
return n
def set_temporal_aggregation_SEG(n, opts, solver_name):
"""
Aggregate network temporally with tsam.
"""
for o in opts:
# segments with package tsam
m = re.match(r"^(\d+)seg$", o, re.IGNORECASE)
if m is not None:
segments = int(m[1])
logger.info(f"Use temporal segmentation with {segments} segments")
n = apply_time_segmentation_perfect(n, segments, solver_name=solver_name)
break
return n
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"prepare_perfect_foresight",
simpl="",
opts="",
clusters="37",
ll="v1.5",
sector_opts="1p7-4380H-T-H-B-I-A-dist1",
)
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
# parameters -----------------------------------------------------------
years = snakemake.config["scenario"]["planning_horizons"]
opts = snakemake.wildcards.sector_opts.split("-")
social_discountrate = snakemake.config["costs"]["social_discountrate"]
for o in opts:
if "sdr" in o:
social_discountrate = float(o.replace("sdr", "")) / 100
logger.info(
f"Concat networks of investment period {years} with social discount rate of {social_discountrate * 100}%"
)
# concat prenetworks of planning horizon to single network ------------
n = concat_networks(years)
# temporal aggregate
opts = snakemake.wildcards.sector_opts.split("-")
solver_name = snakemake.config["solving"]["solver"]["name"]
n = set_temporal_aggregation_SEG(n, opts, solver_name)
# adjust global constraints lv limit if the same for all years
n = adjust_lvlimit(n)
# adjust global constraints CO2 limit
n = adjust_CO2_glc(n)
# adjust stores to multi period investment
n = adjust_stores(n)
# set phase outs
set_all_phase_outs(n)
# add H2 boiler
add_H2_boilers(n)
# set carbon constraints
opts = snakemake.wildcards.sector_opts.split("-")
n = set_carbon_constraints(n, opts)
# export network
n.export_to_netcdf(snakemake.output[0])