pypsa-eur/scripts/build_heat_demand.py

71 lines
2.0 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build heat demand time series using heating degree day (HDD) approximation.
"""
import atlite
import geopandas as gpd
import numpy as np
import pandas as pd
import xarray as xr
from dask.distributed import Client, LocalCluster
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_heat_demands",
weather_year="",
simpl="",
clusters=48,
)
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
cutout_name = snakemake.input.cutout
year = snakemake.wildcards.weather_year
if year:
snapshots = dict(start=year, end=str(int(year) + 1), inclusive="left")
cutout_name = cutout_name.format(weather_year=year)
else:
snapshots = snakemake.params.snapshots
drop_leap_day = snakemake.config["atlite"].get("drop_leap_day", False)
time = pd.date_range(freq="h", **snapshots)
daily = pd.date_range(freq="D", **snapshots)
if drop_leap_day:
time = time[~((time.month == 2) & (time.day == 29))]
daily = daily[~((daily.month == 2) & (daily.day == 29))]
cutout = atlite.Cutout(cutout_name).sel(time=time)
clustered_regions = (
gpd.read_file(snakemake.input.regions_onshore)
.set_index("name")
.buffer(0)
.squeeze()
)
I = cutout.indicatormatrix(clustered_regions)
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
stacked_pop = pop_layout.stack(spatial=("y", "x"))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
heat_demand = cutout.heat_demand(
matrix=M.T,
index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False,
).sel(time=daily)
heat_demand.to_netcdf(snakemake.output.heat_demand)