pypsa-eur/scripts/plot_validation_electricity_prices.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

63 lines
1.8 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
import matplotlib.pyplot as plt
import pandas as pd
import pypsa
import seaborn as sns
from _helpers import configure_logging, set_scenario_config
sns.set_theme("paper", style="whitegrid")
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"plot_electricity_prices",
opts="Ept-12h",
clusters="37",
ll="v1.0",
)
configure_logging(snakemake)
set_scenario_config(snakemake)
n = pypsa.Network(snakemake.input.network)
n.loads.carrier = "load"
historic = pd.read_csv(
snakemake.input.electricity_prices,
index_col=0,
header=0,
parse_dates=True,
)
if len(historic.index) > len(n.snapshots):
historic = historic.resample(n.snapshots.inferred_freq).mean().loc[n.snapshots]
optimized = n.buses_t.marginal_price.groupby(n.buses.country, axis=1).mean()
data = pd.concat([historic, optimized], keys=["Historic", "Optimized"], axis=1)
data.columns.names = ["Kind", "Country"]
fig, ax = plt.subplots(figsize=(6, 6))
df = data.mean().unstack().T
df.plot.barh(ax=ax, xlabel="Electricity Price [€/MWh]", ylabel="")
ax.grid(axis="y")
fig.savefig(snakemake.output.price_bar, bbox_inches="tight")
fig, ax = plt.subplots()
df = data.groupby(level="Kind", axis=1).mean()
df.plot(ax=ax, xlabel="", ylabel="Electricity Price [€/MWh]", alpha=0.8)
ax.grid(axis="x")
fig.savefig(snakemake.output.price_line, bbox_inches="tight")
# touch file
with open(snakemake.output.plots_touch, "a"):
pass