* Cluster first: build renewable profiles and add all assets after clustering * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * correction: pass landfall_lengths through functions * assign landfall_lenghts correctly * remove parameter add_land_use_constraint * fix network_dict * calculate distance to shoreline, remove underwater_fraction * adjust simplification parameter to exclude Crete from offshore wind connections * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove unused geth2015 hydro capacities * removing remaining traces of {simpl} wildcard * add release notes and update workflow graphics * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: lisazeyen <lisa.zeyen@web.de>
48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2024 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Aggregate all rastered cutout data to base regions Voronoi cells.
|
|
"""
|
|
|
|
import logging
|
|
|
|
import atlite
|
|
import geopandas as gpd
|
|
from _helpers import get_snapshots, set_scenario_config
|
|
from atlite.aggregate import aggregate_matrix
|
|
from dask.distributed import Client
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake("build_hac_features")
|
|
set_scenario_config(snakemake)
|
|
|
|
params = snakemake.params
|
|
nprocesses = int(snakemake.threads)
|
|
|
|
if nprocesses > 1:
|
|
client = Client(n_workers=nprocesses, threads_per_worker=1)
|
|
else:
|
|
client = None
|
|
|
|
time = get_snapshots(params.snapshots, params.drop_leap_day)
|
|
|
|
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
|
|
|
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
|
I = cutout.indicatormatrix(regions) # noqa: E741
|
|
|
|
ds = cutout.data[params.features].map(
|
|
aggregate_matrix, matrix=I, index=regions.index
|
|
)
|
|
|
|
ds = ds.load(scheduler=client)
|
|
|
|
ds.to_netcdf(snakemake.output[0])
|