pypsa-eur/scripts/build_electricity_demand_base.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

128 lines
3.9 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Builds the electricity demand for base regions based on population and GDP.
"""
import logging
from itertools import product
import geopandas as gpd
import numpy as np
import pandas as pd
import pypsa
import scipy.sparse as sparse
import xarray as xr
from _helpers import configure_logging, set_scenario_config
from shapely.prepared import prep
logger = logging.getLogger(__name__)
def normed(s: pd.Series) -> pd.Series:
return s / s.sum()
def shapes_to_shapes(orig: gpd.GeoSeries, dest: gpd.GeoSeries) -> sparse.lil_matrix:
"""
Adopted from vresutils.transfer.Shapes2Shapes()
"""
orig_prepped = list(map(prep, orig))
transfer = sparse.lil_matrix((len(dest), len(orig)), dtype=float)
for i, j in product(range(len(dest)), range(len(orig))):
if orig_prepped[j].intersects(dest.iloc[i]):
area = orig.iloc[j].intersection(dest.iloc[i]).area
transfer[i, j] = area / dest.iloc[i].area
return transfer
def upsample_load(
n: pypsa.Network,
regions_fn: str,
load_fn: str,
nuts3_fn: str,
gdp_pop_non_nuts3_fn: str,
distribution_key: dict[str, float],
) -> pd.DataFrame:
substation_lv_i = n.buses.index[n.buses["substation_lv"]]
gdf_regions = gpd.read_file(regions_fn).set_index("name").reindex(substation_lv_i)
load = pd.read_csv(load_fn, index_col=0, parse_dates=True)
nuts3 = gpd.read_file(nuts3_fn).set_index("index")
gdp_weight = distribution_key.get("gdp", 0.6)
pop_weight = distribution_key.get("pop", 0.4)
data_arrays = []
for cntry, group in gdf_regions.geometry.groupby(gdf_regions.country):
load_ct = load[cntry]
if cntry in ["UA", "MD"]:
# separate handling because nuts3 provides no data for UA+MD
gdp_pop_non_nuts3 = gpd.read_file(gdp_pop_non_nuts3_fn).set_index("Bus")
gdp_pop_non_nuts3 = gdp_pop_non_nuts3.loc[
(gdp_pop_non_nuts3.country == cntry)
& (gdp_pop_non_nuts3.index.isin(substation_lv_i))
]
factors = normed(
gdp_weight * normed(gdp_pop_non_nuts3["gdp"])
+ pop_weight * normed(gdp_pop_non_nuts3["pop"])
)
elif len(group) == 1:
factors = pd.Series(1.0, index=group.index)
else:
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
transfer = shapes_to_shapes(group, nuts3_cntry.geometry).T.tocsr()
gdp_n = pd.Series(
transfer.dot(nuts3_cntry["gdp"].fillna(1.0).values), index=group.index
)
pop_n = pd.Series(
transfer.dot(nuts3_cntry["pop"].fillna(1.0).values), index=group.index
)
factors = normed(gdp_weight * normed(gdp_n) + pop_weight * normed(pop_n))
data_arrays.append(
xr.DataArray(
factors.values * load_ct.values[:, np.newaxis],
dims=["time", "bus"],
coords={"time": load_ct.index.values, "bus": factors.index.values},
)
)
return xr.concat(data_arrays, dim="bus")
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_electricity_demand_base")
configure_logging(snakemake)
set_scenario_config(snakemake)
params = snakemake.params
n = pypsa.Network(snakemake.input.base_network)
load = upsample_load(
n,
regions_fn=snakemake.input.regions,
load_fn=snakemake.input.load,
nuts3_fn=snakemake.input.nuts3,
gdp_pop_non_nuts3_fn=snakemake.input.get("gdp_pop_non_nuts3"),
distribution_key=params.distribution_key,
)
load.name = "electricity demand (MW)"
comp = dict(zlib=True, complevel=9, least_significant_digit=5)
load.to_netcdf(snakemake.output[0], encoding={load.name: comp})