pypsa-eur/scripts/build_cutout.py
2024-08-30 18:06:26 +02:00

131 lines
6.4 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Create cutouts with `atlite <https://atlite.readthedocs.io/en/latest/>`_.
For this rule to work you must have
- installed the `Copernicus Climate Data Store <https://cds.climate.copernicus.eu>`_ ``cdsapi`` package (`install with `pip``) and
- registered and setup your CDS API key as described `on their website <https://cds.climate.copernicus.eu/api-how-to>`_.
.. seealso::
For details on the weather data read the `atlite documentation <https://atlite.readthedocs.io/en/latest/>`_.
If you need help specifically for creating cutouts `the corresponding section in the atlite documentation <https://atlite.readthedocs.io/en/latest/examples/create_cutout.html>`_ should be helpful.
Relevant Settings
-----------------
.. code:: yaml
atlite:
nprocesses:
cutouts:
{cutout}:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`atlite_cf`
Inputs
------
*None*
Outputs
-------
- ``cutouts/{cutout}``: weather data from either the `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_
reanalysis weather dataset or `SARAH-3 <https://wui.cmsaf.eu/safira/action/viewProduktSearch>`_
satellite-based historic weather data with the following structure:
**ERA5 cutout:**
=================== ========== ========== =========================================================
Field Dimensions Unit Description
=================== ========== ========== =========================================================
pressure time, y, x Pa Surface pressure
------------------- ---------- ---------- ---------------------------------------------------------
temperature time, y, x K Air temperature 2 meters above the surface.
------------------- ---------- ---------- ---------------------------------------------------------
soil temperature time, y, x K Soil temperature between 1 meters and 3 meters
depth (layer 4).
------------------- ---------- ---------- ---------------------------------------------------------
influx_toa time, y, x Wm**-2 Top of Earth's atmosphere TOA incident solar radiation
------------------- ---------- ---------- ---------------------------------------------------------
influx_direct time, y, x Wm**-2 Total sky direct solar radiation at surface
------------------- ---------- ---------- ---------------------------------------------------------
runoff time, y, x m `Runoff <https://en.wikipedia.org/wiki/Surface_runoff>`_
(volume per area)
------------------- ---------- ---------- ---------------------------------------------------------
roughness y, x m Forecast surface roughness
(`roughness length <https://en.wikipedia.org/wiki/Roughness_length>`_)
------------------- ---------- ---------- ---------------------------------------------------------
height y, x m Surface elevation above sea level
------------------- ---------- ---------- ---------------------------------------------------------
albedo time, y, x -- `Albedo <https://en.wikipedia.org/wiki/Albedo>`_
measure of diffuse reflection of solar radiation.
Calculated from relation between surface solar radiation
downwards (Jm**-2) and surface net solar radiation
(Jm**-2). Takes values between 0 and 1.
------------------- ---------- ---------- ---------------------------------------------------------
influx_diffuse time, y, x Wm**-2 Diffuse solar radiation at surface.
Surface solar radiation downwards minus
direct solar radiation.
------------------- ---------- ---------- ---------------------------------------------------------
wnd100m time, y, x ms**-1 Wind speeds at 100 meters (regardless of direction)
=================== ========== ========== =========================================================
.. image:: img/era5.png
:scale: 40 %
A **SARAH-3 cutout** can be used to amend the fields ``temperature``, ``influx_toa``, ``influx_direct``, ``albedo``,
``influx_diffuse`` of ERA5 using satellite-based radiation observations.
.. image:: img/sarah.png
:scale: 40 %
Description
-----------
"""
import logging
import atlite
import geopandas as gpd
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_cutout", cutout="europe-2013-sarah3-era5")
configure_logging(snakemake)
set_scenario_config(snakemake)
cutout_params = snakemake.params.cutouts[snakemake.wildcards.cutout]
snapshots = pd.date_range(freq="h", **snakemake.params.snapshots)
time = [snapshots[0], snapshots[-1]]
cutout_params["time"] = slice(*cutout_params.get("time", time))
if {"x", "y", "bounds"}.isdisjoint(cutout_params):
# Determine the bounds from bus regions with a buffer of two grid cells
onshore = gpd.read_file(snakemake.input.regions_onshore)
offshore = gpd.read_file(snakemake.input.regions_offshore)
regions = pd.concat([onshore, offshore])
d = max(cutout_params.get("dx", 0.25), cutout_params.get("dy", 0.25)) * 2
cutout_params["bounds"] = regions.total_bounds + [-d, -d, d, d]
elif {"x", "y"}.issubset(cutout_params):
cutout_params["x"] = slice(*cutout_params["x"])
cutout_params["y"] = slice(*cutout_params["y"])
logging.info(f"Preparing cutout with parameters {cutout_params}.")
features = cutout_params.pop("features", None)
cutout = atlite.Cutout(snakemake.output[0], **cutout_params)
cutout.prepare(features=features)