pypsa-eur/config/config.default.yaml
Toni Seibold 51f8c2935a
Adding config for post discretization bugfix (#1309)
* Adding config for post discretization bugfix
2024-09-24 22:25:15 +02:00

1340 lines
36 KiB
YAML

# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: CC0-1.0
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#top-level-configuration
version: 0.13.0
tutorial: false
logging:
level: INFO
format: '%(levelname)s:%(name)s:%(message)s'
private:
keys:
entsoe_api:
remote:
ssh: ""
path: ""
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run
run:
prefix: ""
name: ""
scenarios:
enable: false
file: config/scenarios.yaml
disable_progressbar: false
shared_resources:
policy: false
exclude: []
shared_cutouts: true
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight
foresight: overnight
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#scenario
# Wildcard docs in https://pypsa-eur.readthedocs.io/en/latest/wildcards.html
scenario:
ll:
- vopt
clusters:
- 39
- 128
- 256
opts:
- ''
sector_opts:
- ''
planning_horizons:
# - 2020
# - 2030
# - 2040
- 2050
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries
countries: ['AL', 'AT', 'BA', 'BE', 'BG', 'CH', 'CZ', 'DE', 'DK', 'EE', 'ES', 'FI', 'FR', 'GB', 'GR', 'HR', 'HU', 'IE', 'IT', 'LT', 'LU', 'LV', 'ME', 'MK', 'NL', 'NO', 'PL', 'PT', 'RO', 'RS', 'SE', 'SI', 'SK', 'XK']
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#snapshots
snapshots:
start: "2013-01-01"
end: "2014-01-01"
inclusive: 'left'
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable
enable:
retrieve: auto
retrieve_databundle: true
retrieve_cost_data: true
build_cutout: false
retrieve_cutout: true
custom_busmap: false
drop_leap_day: true
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget
co2_budget:
2020: 0.701
2025: 0.524
2030: 0.297
2035: 0.150
2040: 0.071
2045: 0.032
2050: 0.000
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#electricity
electricity:
voltages: [200., 220., 300., 380., 500., 750.]
base_network: osm-prebuilt
osm-prebuilt-version: 0.4
gaslimit_enable: false
gaslimit: false
co2limit_enable: false
co2limit: 7.75e+7
co2base: 1.487e+9
operational_reserve:
activate: false
epsilon_load: 0.02
epsilon_vres: 0.02
contingency: 4000
max_hours:
battery: 6
H2: 168
extendable_carriers:
Generator: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float, OCGT, CCGT]
StorageUnit: [] # battery, H2
Store: [battery, H2]
Link: [] # H2 pipeline
powerplants_filter: (DateOut >= 2023 or DateOut != DateOut) and not (Country == 'Germany' and Fueltype == 'Nuclear')
custom_powerplants: false
everywhere_powerplants: []
conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float, hydro]
estimate_renewable_capacities:
enable: true
from_opsd: true
year: 2020
expansion_limit: false
technology_mapping:
Offshore: [offwind-ac, offwind-dc, offwind-float]
Onshore: [onwind]
PV: [solar]
autarky:
enable: false
by_country: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#atlite
atlite:
default_cutout: europe-2013-sarah3-era5
nprocesses: 4
show_progress: false
cutouts:
# use 'base' to determine geographical bounds and time span from config
# base:
# module: era5
europe-2013-sarah3-era5:
module: [sarah, era5] # in priority order
x: [-12., 42.]
y: [33., 72.]
dx: 0.3
dy: 0.3
time: ['2013', '2013']
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#renewable
renewable:
onwind:
cutout: europe-2013-sarah3-era5
resource:
method: wind
turbine: Vestas_V112_3MW
smooth: false
add_cutout_windspeed: true
capacity_per_sqkm: 3
# correction_factor: 0.93
corine:
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32]
distance: 1000
distance_grid_codes: [1, 2, 3, 4, 5, 6]
luisa: false
# grid_codes: [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242]
# distance: 1000
# distance_grid_codes: [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242]
natura: true
excluder_resolution: 100
clip_p_max_pu: 1.e-2
offwind-ac:
cutout: europe-2013-sarah3-era5
resource:
method: wind
turbine: NREL_ReferenceTurbine_2020ATB_5.5MW
smooth: false
add_cutout_windspeed: true
capacity_per_sqkm: 2
correction_factor: 0.8855
corine: [44, 255]
luisa: false # [0, 5230]
natura: true
ship_threshold: 400
max_depth: 60
max_shore_distance: 30000
excluder_resolution: 200
clip_p_max_pu: 1.e-2
landfall_length: 10
offwind-dc:
cutout: europe-2013-sarah3-era5
resource:
method: wind
turbine: NREL_ReferenceTurbine_2020ATB_5.5MW
smooth: false
add_cutout_windspeed: true
capacity_per_sqkm: 2
correction_factor: 0.8855
corine: [44, 255]
luisa: false # [0, 5230]
natura: true
ship_threshold: 400
max_depth: 60
min_shore_distance: 30000
excluder_resolution: 200
clip_p_max_pu: 1.e-2
landfall_length: 10
offwind-float:
cutout: europe-2013-sarah3-era5
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
smooth: false
add_cutout_windspeed: true
# ScholzPhd Tab 4.3.1: 10MW/km^2
capacity_per_sqkm: 2
correction_factor: 0.8855
# proxy for wake losses
# from 10.1016/j.energy.2018.08.153
# until done more rigorously in #153
corine: [44, 255]
natura: true
ship_threshold: 400
excluder_resolution: 200
min_depth: 60
max_depth: 1000
clip_p_max_pu: 1.e-2
landfall_length: 10
solar:
cutout: europe-2013-sarah3-era5
resource:
method: pv
panel: CSi
orientation:
slope: 35.
azimuth: 180.
capacity_per_sqkm: 5.1
# correction_factor: 0.854337
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
luisa: false # [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242, 1310, 1320, 1330, 1410, 1421, 1422, 2110, 2120, 2130, 2210, 2220, 2230, 2310, 2410, 2420, 3210, 3320, 3330]
natura: true
excluder_resolution: 100
clip_p_max_pu: 1.e-2
solar-hsat:
cutout: europe-2013-sarah3-era5
resource:
method: pv
panel: CSi
orientation:
slope: 35.
azimuth: 180.
tracking: horizontal
capacity_per_sqkm: 4.43 # 15% higher land usage acc. to NREL
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
luisa: false # [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242, 1310, 1320, 1330, 1410, 1421, 1422, 2110, 2120, 2130, 2210, 2220, 2230, 2310, 2410, 2420, 3210, 3320, 3330]
natura: true
excluder_resolution: 100
clip_p_max_pu: 1.e-2
hydro:
cutout: europe-2013-sarah3-era5
carriers: [ror, PHS, hydro]
PHS_max_hours: 6
hydro_max_hours: "energy_capacity_totals_by_country" # one of energy_capacity_totals_by_country, estimate_by_large_installations or a float
flatten_dispatch: false
flatten_dispatch_buffer: 0.2
clip_min_inflow: 1.0
eia_norm_year: false
eia_correct_by_capacity: false
eia_approximate_missing: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#conventional
conventional:
unit_commitment: false
dynamic_fuel_price: false
nuclear:
p_max_pu: "data/nuclear_p_max_pu.csv" # float of file name
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#lines
lines:
types:
200.: "Al/St 240/40 2-bundle 200.0"
220.: "Al/St 240/40 2-bundle 220.0"
300.: "Al/St 240/40 3-bundle 300.0"
380.: "Al/St 240/40 4-bundle 380.0"
500.: "Al/St 240/40 4-bundle 380.0"
750.: "Al/St 560/50 4-bundle 750.0"
s_max_pu: 0.7
s_nom_max: .inf
max_extension: 20000 #MW
length_factor: 1.25
reconnect_crimea: true
under_construction: 'keep' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity for lines in grid extract
dynamic_line_rating:
activate: false
cutout: europe-2013-sarah3-era5
correction_factor: 0.95
max_voltage_difference: false
max_line_rating: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#links
links:
p_max_pu: 1.0
p_nom_max: .inf
max_extension: 30000 #MW
length_factor: 1.25
under_construction: 'keep' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity for lines in grid extract
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#transmission_projects
transmission_projects:
enable: true
include:
tyndp2020: true
nep: true
manual: true
skip:
- upgraded_lines
- upgraded_links
status:
- under_construction
- in_permitting
- confirmed
#- planned_not_yet_permitted
#- under_consideration
new_link_capacity: zero #keep or zero
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#transformers
transformers:
x: 0.1
s_nom: 2000.
type: ''
# docs-load in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#load
load:
interpolate_limit: 3
time_shift_for_large_gaps: 1w
manual_adjustments: true # false
scaling_factor: 1.0
fixed_year: false # false or year (e.g. 2013)
supplement_synthetic: true
distribution_key:
gdp: 0.6
population: 0.4
# docs
# TODO: PyPSA-Eur merge issue in prepare_sector_network.py
# regulate what components with which carriers are kept from PyPSA-Eur;
# some technologies are removed because they are implemented differently
# (e.g. battery or H2 storage) or have different year-dependent costs
# in PyPSA-Eur-Sec
pypsa_eur:
Bus:
- AC
Link:
- DC
Generator:
- onwind
- offwind-ac
- offwind-dc
- offwind-float
- solar-hsat
- solar
- ror
- nuclear
StorageUnit:
- PHS
- hydro
Store: []
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#energy
energy:
energy_totals_year: 2019
base_emissions_year: 1990
emissions: CO2
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#biomass
biomass:
year: 2030
scenario: ENS_Med
classes:
solid biomass:
- Agricultural waste
- Fuelwood residues
- Secondary Forestry residues - woodchips
- Sawdust
- Residues from landscape care
not included:
- Sugar from sugar beet
- Rape seed
- "Sunflower, soya seed "
- Bioethanol barley, wheat, grain maize, oats, other cereals and rye
- Miscanthus, switchgrass, RCG
- Willow
- Poplar
- FuelwoodRW
- C&P_RW
biogas:
- Manure solid, liquid
- Sludge
municipal solid waste:
- Municipal waste
share_unsustainable_use_retained:
2020: 1
2025: 0.66
2030: 0.33
2035: 0
2040: 0
2045: 0
2050: 0
share_sustainable_potential_available:
2020: 0
2025: 0.33
2030: 0.66
2035: 1
2040: 1
2045: 1
2050: 1
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solar-thermal
solar_thermal:
clearsky_model: simple # should be "simple" or "enhanced"?
orientation:
slope: 45.
azimuth: 180.
cutout: default
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#existing-capacities
existing_capacities:
grouping_years_power: [1920, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025]
grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # heat grouping years >= baseyear will be ignored
threshold_capacity: 10
default_heating_lifetime: 20
conventional_carriers:
- lignite
- coal
- oil
- uranium
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector
sector:
transport: true
heating: true
biomass: true
industry: true
agriculture: true
fossil_fuels: true
district_heating:
potential: 0.6
progress:
2020: 0.0
2025: 0.15
2030: 0.3
2035: 0.45
2040: 0.6
2045: 0.8
2050: 1.0
district_heating_loss: 0.15
supply_temperature_approximation:
max_forward_temperature:
FR: 110
DK: 75
DE: 109
CZ: 130
FI: 115
PL: 130
SE: 102
IT: 90
min_forward_temperature:
DE: 82
return_temperature:
DE: 58
lower_threshold_ambient_temperature: 0
upper_threshold_ambient_temperature: 10
rolling_window_ambient_temperature: 72
heat_source_cooling: 6 #K
heat_pump_cop_approximation:
refrigerant: ammonia
heat_exchanger_pinch_point_temperature_difference: 5 #K
isentropic_compressor_efficiency: 0.8
heat_loss: 0.0
heat_pump_sources:
urban central:
- air
urban decentral:
- air
rural:
- air
- ground
cluster_heat_buses: true
heat_demand_cutout: default
bev_dsm_restriction_value: 0.75
bev_dsm_restriction_time: 7
transport_heating_deadband_upper: 20.
transport_heating_deadband_lower: 15.
ICE_lower_degree_factor: 0.375
ICE_upper_degree_factor: 1.6
EV_lower_degree_factor: 0.98
EV_upper_degree_factor: 0.63
bev_dsm: true
bev_availability: 0.5
bev_energy: 0.05
bev_charge_efficiency: 0.9
bev_charge_rate: 0.011
bev_avail_max: 0.95
bev_avail_mean: 0.8
v2g: true
land_transport_fuel_cell_share:
2020: 0
2025: 0
2030: 0
2035: 0
2040: 0
2045: 0
2050: 0
land_transport_electric_share:
2020: 0
2025: 0.15
2030: 0.3
2035: 0.45
2040: 0.7
2045: 0.85
2050: 1
land_transport_ice_share:
2020: 1
2025: 0.85
2030: 0.7
2035: 0.55
2040: 0.3
2045: 0.15
2050: 0
transport_electric_efficiency: 53.19 # 1 MWh_el = 53.19*100 km
transport_fuel_cell_efficiency: 30.003 # 1 MWh_H2 = 30.003*100 km
transport_ice_efficiency: 16.0712 # 1 MWh_oil = 16.0712 * 100 km
agriculture_machinery_electric_share: 0
agriculture_machinery_oil_share: 1
agriculture_machinery_fuel_efficiency: 0.7
agriculture_machinery_electric_efficiency: 0.3
MWh_MeOH_per_MWh_H2: 0.8787
MWh_MeOH_per_tCO2: 4.0321
MWh_MeOH_per_MWh_e: 3.6907
shipping_hydrogen_liquefaction: false
shipping_hydrogen_share:
2020: 0
2025: 0
2030: 0
2035: 0
2040: 0
2045: 0
2050: 0
shipping_methanol_share:
2020: 0
2025: 0.15
2030: 0.3
2035: 0.5
2040: 0.7
2045: 0.85
2050: 1
shipping_oil_share:
2020: 1
2025: 0.85
2030: 0.7
2035: 0.5
2040: 0.3
2045: 0.15
2050: 0
shipping_methanol_efficiency: 0.46
shipping_oil_efficiency: 0.40
aviation_demand_factor: 1.
HVC_demand_factor: 1.
time_dep_hp_cop: true
heat_pump_sink_T_individual_heating: 55.
reduce_space_heat_exogenously: true
reduce_space_heat_exogenously_factor:
2020: 0.10 # this results in a space heat demand reduction of 10%
2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
2030: 0.09
2035: 0.11
2040: 0.16
2045: 0.21
2050: 0.29
retrofitting:
retro_endogen: false
cost_factor: 1.0
interest_rate: 0.04
annualise_cost: true
tax_weighting: false
construction_index: true
tes: true
tes_tau:
decentral: 3
central: 180
boilers: true
resistive_heaters: true
oil_boilers: false
biomass_boiler: true
overdimension_heat_generators:
decentral: 1.1 #to cover demand peaks bigger than data
central: 1.0
chp: true
micro_chp: false
solar_thermal: true
solar_cf_correction: 0.788457 # = >>> 1/1.2683
marginal_cost_storage: 0. #1e-4
methanation: true
coal_cc: false
dac: true
co2_vent: false
central_heat_vent: false
allam_cycle_gas: false
hydrogen_fuel_cell: true
hydrogen_turbine: false
SMR: true
SMR_cc: true
regional_oil_demand: false
regional_coal_demand: false
regional_co2_sequestration_potential:
enable: false
attribute:
- conservative estimate Mt
- conservative estimate GAS Mt
- conservative estimate OIL Mt
- conservative estimate aquifer Mt
include_onshore: false
min_size: 3
max_size: 25
years_of_storage: 25
co2_sequestration_potential:
2020: 0
2025: 0
2030: 50
2035: 100
2040: 200
2045: 200
2050: 200
co2_sequestration_cost: 10
co2_sequestration_lifetime: 50
co2_spatial: false
co2network: false
co2_network_cost_factor: 1
cc_fraction: 0.9
hydrogen_underground_storage: true
hydrogen_underground_storage_locations:
# - onshore # more than 50 km from sea
- nearshore # within 50 km of sea
# - offshore
methanol:
regional_methanol_demand: false
methanol_reforming: false
methanol_reforming_cc: false
methanol_to_kerosene: false
methanol_to_power:
ccgt: false
ccgt_cc: false
ocgt: false
allam: false
biomass_to_methanol: false
biomass_to_methanol_cc: false
ammonia: false
min_part_load_fischer_tropsch: 0.5
min_part_load_methanolisation: 0.3
min_part_load_methanation: 0.3
use_fischer_tropsch_waste_heat: 0.25
use_haber_bosch_waste_heat: 0.25
use_methanolisation_waste_heat: 0.25
use_methanation_waste_heat: 0.25
use_fuel_cell_waste_heat: 0.25
use_electrolysis_waste_heat: 0.25
electricity_transmission_grid: true
electricity_distribution_grid: true
electricity_grid_connection: true
transmission_efficiency:
DC:
efficiency_static: 0.98
efficiency_per_1000km: 0.977
H2 pipeline:
efficiency_per_1000km: 1 # 0.982
compression_per_1000km: 0.018
gas pipeline:
efficiency_per_1000km: 1 #0.977
compression_per_1000km: 0.01
electricity distribution grid:
efficiency_static: 0.97
H2_network: true
gas_network: false
H2_retrofit: false
H2_retrofit_capacity_per_CH4: 0.6
gas_network_connectivity_upgrade: 1
gas_distribution_grid: true
gas_distribution_grid_cost_factor: 1.0
biomass_spatial: false
biomass_transport: false
biogas_upgrading_cc: false
conventional_generation:
OCGT: gas
biomass_to_liquid: false
biomass_to_liquid_cc: false
electrobiofuels: false
biosng: false
biosng_cc: false
bioH2: false
municipal_solid_waste: false
limit_max_growth:
enable: false
# allowing 30% larger than max historic growth
factor: 1.3
max_growth: # unit GW
onwind: 16 # onshore max grow so far 16 GW in Europe https://www.iea.org/reports/renewables-2020/wind
solar: 28 # solar max grow so far 28 GW in Europe https://www.iea.org/reports/renewables-2020/solar-pv
offwind-ac: 35 # offshore max grow so far 3.5 GW in Europe https://windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-statistics-2019/
offwind-dc: 35
max_relative_growth:
onwind: 3
solar: 3
offwind-ac: 3
offwind-dc: 3
enhanced_geothermal:
enable: false
flexible: true
max_hours: 240
max_boost: 0.25
var_cf: true
sustainability_factor: 0.0025
solid_biomass_import:
enable: false
price: 54 #EUR/MWh
max_amount: 1390 # TWh
upstream_emissions_factor: .1 #share of solid biomass CO2 emissions at full combustion
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry
industry:
St_primary_fraction:
2020: 0.6
2025: 0.55
2030: 0.5
2035: 0.45
2040: 0.4
2045: 0.35
2050: 0.3
DRI_fraction:
2020: 0
2025: 0
2030: 0.05
2035: 0.2
2040: 0.4
2045: 0.7
2050: 1
H2_DRI: 1.7
elec_DRI: 0.322
Al_primary_fraction:
2020: 0.4
2025: 0.375
2030: 0.35
2035: 0.325
2040: 0.3
2045: 0.25
2050: 0.2
MWh_NH3_per_tNH3: 5.166
MWh_CH4_per_tNH3_SMR: 10.8
MWh_elec_per_tNH3_SMR: 0.7
MWh_H2_per_tNH3_electrolysis: 5.93
MWh_elec_per_tNH3_electrolysis: 0.2473
MWh_NH3_per_MWh_H2_cracker: 1.46 # https://github.com/euronion/trace/blob/44a5ff8401762edbef80eff9cfe5a47c8d3c8be4/data/efficiencies.csv
NH3_process_emissions: 24.5
petrochemical_process_emissions: 25.5
#HVC primary/recycling based on values used in Neumann et al https://doi.org/10.1016/j.joule.2023.06.016, linearly interpolated between 2020 and 2050
#2020 recycling rates based on Agora https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_02_EU_CEAP/A-EW_254_Mobilising-circular-economy_study_WEB.pdf
#fractions refer to the total primary HVC production in 2020
#assumes 6.7 Mtplastics produced from recycling in 2020
HVC_primary_fraction:
2020: 1.0
2025: 0.9
2030: 0.8
2035: 0.7
2040: 0.6
2045: 0.5
2050: 0.4
HVC_mechanical_recycling_fraction:
2020: 0.12
2025: 0.15
2030: 0.18
2035: 0.21
2040: 0.24
2045: 0.27
2050: 0.30
HVC_chemical_recycling_fraction:
2020: 0.0
2025: 0.0
2030: 0.04
2035: 0.08
2040: 0.12
2045: 0.16
2050: 0.20
HVC_environment_sequestration_fraction: 0.
waste_to_energy: false
waste_to_energy_cc: false
sector_ratios_fraction_future:
2020: 0.0
2025: 0.1
2030: 0.3
2035: 0.5
2040: 0.7
2045: 0.9
2050: 1.0
basic_chemicals_without_NH3_production_today: 69. #Mt/a, = 86 Mtethylene-equiv - 17 MtNH3
HVC_production_today: 52.
MWh_elec_per_tHVC_mechanical_recycling: 0.547
MWh_elec_per_tHVC_chemical_recycling: 6.9
chlorine_production_today: 9.58
MWh_elec_per_tCl: 3.6
MWh_H2_per_tCl: -0.9372
methanol_production_today: 1.5
MWh_elec_per_tMeOH: 0.167
MWh_CH4_per_tMeOH: 10.25
MWh_MeOH_per_tMeOH: 5.528
hotmaps_locate_missing: false
reference_year: 2019
oil_refining_emissions: 0.013
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs
costs:
year: 2030
version: v0.9.2
social_discountrate: 0.02
fill_values:
FOM: 0
VOM: 0
efficiency: 1
fuel: 0
investment: 0
lifetime: 25
"CO2 intensity": 0
"discount rate": 0.07
# Marginal and capital costs can be overwritten
# capital_cost:
# onwind: 500
marginal_cost:
solar: 0.01
onwind: 0.015
offwind: 0.015
hydro: 0.
H2: 0.
electrolysis: 0.
fuel cell: 0.
battery: 0.
battery inverter: 0.
emission_prices:
enable: false
co2: 0.
co2_monthly_prices: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#clustering
clustering:
focus_weights: false
simplify_network:
to_substations: false
remove_stubs: true
remove_stubs_across_borders: false
cluster_network:
algorithm: kmeans
hac_features:
- wnd100m
- influx_direct
exclude_carriers: []
consider_efficiency_classes: false
aggregation_strategies:
generators:
committable: any
ramp_limit_up: max
ramp_limit_down: max
temporal:
resolution_elec: false
resolution_sector: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#adjustments
adjustments:
electricity: false
sector:
factor:
Link:
electricity distribution grid:
capital_cost: 1.0
absolute: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving
solving:
#tmpdir: "path/to/tmp"
options:
clip_p_max_pu: 1.e-2
load_shedding: false
curtailment_mode: false
noisy_costs: true
skip_iterations: true
rolling_horizon: false
seed: 123
custom_extra_functionality: "../data/custom_extra_functionality.py"
# io_api: "direct" # Increases performance but only supported for the highs and gurobi solvers
# options that go into the optimize function
track_iterations: false
min_iterations: 2
max_iterations: 3
transmission_losses: 2
linearized_unit_commitment: true
horizon: 365
post_discretization:
enable: false
line_unit_size: 1700
line_threshold: 0.3
link_unit_size:
DC: 2000
H2 pipeline: 1200
gas pipeline: 1500
link_threshold:
DC: 0.3
H2 pipeline: 0.3
gas pipeline: 0.3
fractional_last_unit_size: false
agg_p_nom_limits:
agg_offwind: false
include_existing: false
file: data/agg_p_nom_minmax.csv
constraints:
CCL: false
EQ: false
BAU: false
SAFE: false
solver:
name: gurobi
options: gurobi-default
solver_options:
highs-default:
# refer to https://ergo-code.github.io/HiGHS/dev/options/definitions/
threads: 1
solver: "ipm"
run_crossover: "off"
small_matrix_value: 1e-6
large_matrix_value: 1e9
primal_feasibility_tolerance: 1e-5
dual_feasibility_tolerance: 1e-5
ipm_optimality_tolerance: 1e-4
parallel: "on"
random_seed: 123
gurobi-default:
threads: 8
method: 2 # barrier
crossover: 0
BarConvTol: 1.e-6
Seed: 123
AggFill: 0
PreDual: 0
GURO_PAR_BARDENSETHRESH: 200
gurobi-numeric-focus:
NumericFocus: 3 # Favour numeric stability over speed
method: 2 # barrier
crossover: 0 # do not use crossover
BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge
BarConvTol: 1.e-5
FeasibilityTol: 1.e-4
OptimalityTol: 1.e-4
ObjScale: -0.5
threads: 8
Seed: 123
gurobi-fallback: # Use gurobi defaults
crossover: 0
method: 2 # barrier
BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge
BarConvTol: 1.e-5
FeasibilityTol: 1.e-5
OptimalityTol: 1.e-5
Seed: 123
threads: 8
cplex-default:
threads: 4
lpmethod: 4 # barrier
solutiontype: 2 # non basic solution, ie no crossover
barrier.convergetol: 1.e-5
feasopt.tolerance: 1.e-6
copt-default:
Threads: 8
LpMethod: 2
Crossover: 0
RelGap: 1.e-6
Dualize: 0
copt-gpu:
LpMethod: 6
GPUMode: 1
PDLPTol: 1.e-5
Crossover: 0
cbc-default: {} # Used in CI
glpk-default: {} # Used in CI
mem_mb: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
runtime: 6h #runtime in humanfriendly style https://humanfriendly.readthedocs.io/en/latest/
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#plotting
plotting:
map:
boundaries: [-11, 30, 34, 71]
color_geomap:
ocean: white
land: white
projection:
name: "EqualEarth"
# See https://scitools.org.uk/cartopy/docs/latest/reference/projections.html for alternatives, for example:
# name: "LambertConformal"
# central_longitude: 10.
# central_latitude: 50.
# standard_parallels: [35, 65]
eu_node_location:
x: -5.5
y: 46.
costs_max: 1000
costs_threshold: 1
energy_max: 20000
energy_min: -20000
energy_threshold: 50.
nice_names:
OCGT: "Open-Cycle Gas"
CCGT: "Combined-Cycle Gas"
offwind-ac: "Offshore Wind (AC)"
offwind-dc: "Offshore Wind (DC)"
offwind-float: "Offshore Wind (Floating)"
onwind: "Onshore Wind"
solar: "Solar"
PHS: "Pumped Hydro Storage"
hydro: "Reservoir & Dam"
battery: "Battery Storage"
H2: "Hydrogen Storage"
lines: "Transmission Lines"
ror: "Run of River"
load: "Load Shedding"
ac: "AC"
dc: "DC"
tech_colors:
# wind
onwind: "#235ebc"
onshore wind: "#235ebc"
offwind: "#6895dd"
offshore wind: "#6895dd"
offwind-ac: "#6895dd"
offshore wind (AC): "#6895dd"
offshore wind ac: "#6895dd"
offwind-dc: "#74c6f2"
offshore wind (DC): "#74c6f2"
offshore wind dc: "#74c6f2"
offwind-float: "#b5e2fa"
offshore wind (Float): "#b5e2fa"
offshore wind float: "#b5e2fa"
# water
hydro: '#298c81'
hydro reservoir: '#298c81'
ror: '#3dbfb0'
run of river: '#3dbfb0'
hydroelectricity: '#298c81'
PHS: '#51dbcc'
hydro+PHS: "#08ad97"
# solar
solar: "#f9d002"
solar PV: "#f9d002"
solar-hsat: "#fdb915"
solar thermal: '#ffbf2b'
residential rural solar thermal: '#f1c069'
services rural solar thermal: '#eabf61'
residential urban decentral solar thermal: '#e5bc5a'
services urban decentral solar thermal: '#dfb953'
urban central solar thermal: '#d7b24c'
solar rooftop: '#ffea80'
# gas
OCGT: '#e0986c'
OCGT marginal: '#e0986c'
OCGT-heat: '#e0986c'
gas boiler: '#db6a25'
gas boilers: '#db6a25'
gas boiler marginal: '#db6a25'
residential rural gas boiler: '#d4722e'
residential urban decentral gas boiler: '#cb7a36'
services rural gas boiler: '#c4813f'
services urban decentral gas boiler: '#ba8947'
urban central gas boiler: '#b0904f'
gas: '#e05b09'
fossil gas: '#e05b09'
natural gas: '#e05b09'
biogas to gas: '#e36311'
biogas to gas CC: '#e51245'
CCGT: '#a85522'
CCGT marginal: '#a85522'
allam: '#B98F76'
gas for industry co2 to atmosphere: '#692e0a'
gas for industry co2 to stored: '#8a3400'
gas for industry: '#853403'
gas for industry CC: '#692e0a'
gas pipeline: '#ebbca0'
gas pipeline new: '#a87c62'
# oil
oil: '#c9c9c9'
oil primary: '#d2d2d2'
oil refining: '#e6e6e6'
imported oil: '#a3a3a3'
oil boiler: '#adadad'
residential rural oil boiler: '#a9a9a9'
services rural oil boiler: '#a5a5a5'
residential urban decentral oil boiler: '#a1a1a1'
urban central oil boiler: '#9d9d9d'
services urban decentral oil boiler: '#999999'
agriculture machinery oil: '#949494'
shipping oil: "#808080"
land transport oil: '#afafaf'
# nuclear
Nuclear: '#ff8c00'
Nuclear marginal: '#ff8c00'
nuclear: '#ff8c00'
uranium: '#ff8c00'
# coal
Coal: '#545454'
coal: '#545454'
Coal marginal: '#545454'
coal for industry: '#343434'
solid: '#545454'
Lignite: '#826837'
lignite: '#826837'
Lignite marginal: '#826837'
# biomass
biogas: '#e3d37d'
biomass: '#baa741'
solid biomass: '#baa741'
municipal solid waste: '#91ba41'
solid biomass import: '#d5ca8d'
solid biomass transport: '#baa741'
solid biomass for industry: '#7a6d26'
solid biomass for industry CC: '#47411c'
solid biomass for industry co2 from atmosphere: '#736412'
solid biomass for industry co2 to stored: '#47411c'
urban central solid biomass CHP: '#9d9042'
urban central solid biomass CHP CC: '#6c5d28'
biomass boiler: '#8A9A5B'
residential rural biomass boiler: '#a1a066'
residential urban decentral biomass boiler: '#b0b87b'
services rural biomass boiler: '#c6cf98'
services urban decentral biomass boiler: '#dde5b5'
biomass to liquid: '#32CD32'
unsustainable solid biomass: '#998622'
unsustainable bioliquids: '#32CD32'
electrobiofuels: 'red'
BioSNG: '#123456'
solid biomass to hydrogen: '#654321'
# power transmission
lines: '#6c9459'
transmission lines: '#6c9459'
electricity distribution grid: '#97ad8c'
low voltage: '#97ad8c'
# electricity demand
Electric load: '#110d63'
electric demand: '#110d63'
electricity: '#110d63'
industry electricity: '#2d2a66'
industry new electricity: '#2d2a66'
agriculture electricity: '#494778'
# battery + EVs
battery: '#ace37f'
battery storage: '#ace37f'
battery charger: '#88a75b'
battery discharger: '#5d4e29'
home battery: '#80c944'
home battery storage: '#80c944'
home battery charger: '#5e8032'
home battery discharger: '#3c5221'
BEV charger: '#baf238'
V2G: '#e5ffa8'
land transport EV: '#baf238'
land transport demand: '#38baf2'
EV battery: '#baf238'
# hot water storage
water tanks: '#e69487'
residential rural water tanks: '#f7b7a3'
services rural water tanks: '#f3afa3'
residential urban decentral water tanks: '#f2b2a3'
services urban decentral water tanks: '#f1b4a4'
urban central water tanks: '#e9977d'
hot water storage: '#e69487'
hot water charging: '#e8998b'
urban central water tanks charger: '#b57a67'
residential rural water tanks charger: '#b4887c'
residential urban decentral water tanks charger: '#b39995'
services rural water tanks charger: '#b3abb0'
services urban decentral water tanks charger: '#b3becc'
hot water discharging: '#e99c8e'
urban central water tanks discharger: '#b9816e'
residential rural water tanks discharger: '#ba9685'
residential urban decentral water tanks discharger: '#baac9e'
services rural water tanks discharger: '#bbc2b8'
services urban decentral water tanks discharger: '#bdd8d3'
# heat demand
Heat load: '#cc1f1f'
heat: '#cc1f1f'
heat vent: '#aa3344'
heat demand: '#cc1f1f'
rural heat: '#ff5c5c'
residential rural heat: '#ff7c7c'
services rural heat: '#ff9c9c'
central heat: '#cc1f1f'
urban central heat: '#d15959'
urban central heat vent: '#a74747'
decentral heat: '#750606'
residential urban decentral heat: '#a33c3c'
services urban decentral heat: '#cc1f1f'
low-temperature heat for industry: '#8f2727'
process heat: '#ff0000'
agriculture heat: '#d9a5a5'
# heat supply
heat pumps: '#2fb537'
heat pump: '#2fb537'
air heat pump: '#36eb41'
residential urban decentral air heat pump: '#48f74f'
services urban decentral air heat pump: '#5af95d'
services rural air heat pump: '#5af95d'
urban central air heat pump: '#6cfb6b'
ground heat pump: '#2fb537'
residential rural ground heat pump: '#48f74f'
residential rural air heat pump: '#48f74f'
services rural ground heat pump: '#5af95d'
Ambient: '#98eb9d'
CHP: '#8a5751'
urban central gas CHP: '#8d5e56'
CHP CC: '#634643'
urban central gas CHP CC: '#6e4e4c'
CHP heat: '#8a5751'
CHP electric: '#8a5751'
district heating: '#e8beac'
resistive heater: '#d8f9b8'
residential rural resistive heater: '#bef5b5'
residential urban decentral resistive heater: '#b2f1a9'
services rural resistive heater: '#a5ed9d'
services urban decentral resistive heater: '#98e991'
urban central resistive heater: '#8cdf85'
retrofitting: '#8487e8'
building retrofitting: '#8487e8'
# hydrogen
H2 for industry: "#f073da"
H2 for shipping: "#ebaee0"
H2: '#bf13a0'
hydrogen: '#bf13a0'
retrofitted H2 boiler: '#e5a0d9'
SMR: '#870c71'
SMR CC: '#4f1745'
H2 liquefaction: '#d647bd'
hydrogen storage: '#bf13a0'
H2 Store: '#bf13a0'
H2 storage: '#bf13a0'
land transport fuel cell: '#6b3161'
H2 pipeline: '#f081dc'
H2 pipeline retrofitted: '#ba99b5'
H2 Fuel Cell: '#c251ae'
H2 fuel cell: '#c251ae'
H2 turbine: '#991f83'
H2 Electrolysis: '#ff29d9'
H2 electrolysis: '#ff29d9'
# ammonia
NH3: '#46caf0'
ammonia: '#46caf0'
ammonia store: '#00ace0'
ammonia cracker: '#87d0e6'
Haber-Bosch: '#076987'
# syngas
Sabatier: '#9850ad'
methanation: '#c44ce6'
methane: '#c44ce6'
# synfuels
Fischer-Tropsch: '#25c49a'
liquid: '#25c49a'
kerosene for aviation: '#a1ffe6'
naphtha for industry: '#57ebc4'
methanol-to-kerosene: '#C98468'
methanol-to-olefins/aromatics: '#FFA07A'
Methanol steam reforming: '#FFBF00'
Methanol steam reforming CC: '#A2EA8A'
methanolisation: '#00FFBF'
biomass-to-methanol: '#EAD28A'
biomass-to-methanol CC: '#EADBAD'
allam methanol: '#B98F76'
CCGT methanol: '#B98F76'
CCGT methanol CC: '#B98F76'
OCGT methanol: '#B98F76'
methanol: '#FF7B00'
methanol transport: '#FF7B00'
shipping methanol: '#468c8b'
industry methanol: '#468c8b'
# co2
CC: '#f29dae'
CCS: '#f29dae'
CO2 sequestration: '#f29dae'
DAC: '#ff5270'
co2 stored: '#f2385a'
co2 sequestered: '#f2682f'
co2: '#f29dae'
co2 vent: '#ffd4dc'
CO2 pipeline: '#f5627f'
# emissions
process emissions CC: '#000000'
process emissions: '#222222'
process emissions to stored: '#444444'
process emissions to atmosphere: '#888888'
oil emissions: '#aaaaaa'
shipping oil emissions: "#555555"
shipping methanol emissions: '#666666'
land transport oil emissions: '#777777'
agriculture machinery oil emissions: '#333333'
# other
shipping: '#03a2ff'
power-to-heat: '#2fb537'
power-to-gas: '#c44ce6'
power-to-H2: '#ff29d9'
power-to-liquid: '#25c49a'
gas-to-power/heat: '#ee8340'
waste: '#e3d37d'
other: '#000000'
geothermal: '#ba91b1'
geothermal heat: '#ba91b1'
geothermal district heat: '#d19D00'
geothermal organic rankine cycle: '#ffbf00'
AC: "#70af1d"
AC-AC: "#70af1d"
AC line: "#70af1d"
links: "#8a1caf"
HVDC links: "#8a1caf"
DC: "#8a1caf"
DC-DC: "#8a1caf"
DC link: "#8a1caf"
load: "#dd2e23"
waste CHP: '#e3d37d'
waste CHP CC: '#e3d3ff'
HVC to air: 'k'