f3e8fe2312
for more information, see https://pre-commit.ci
560 lines
18 KiB
Python
560 lines
18 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
# coding: utf-8
|
|
"""
|
|
Creates networks clustered to ``{cluster}`` number of zones with aggregated
|
|
buses, generators and transmission corridors.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
clustering:
|
|
cluster_network:
|
|
aggregation_strategies:
|
|
|
|
focus_weights:
|
|
|
|
solving:
|
|
solver:
|
|
name:
|
|
|
|
lines:
|
|
length_factor:
|
|
|
|
.. seealso::
|
|
Documentation of the configuration file ``config/config.yaml`` at
|
|
:ref:`toplevel_cf`, :ref:`renewable_cf`, :ref:`solving_cf`, :ref:`lines_cf`
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``resources/regions_onshore_elec_s{simpl}.geojson``: confer :ref:`simplify`
|
|
- ``resources/regions_offshore_elec_s{simpl}.geojson``: confer :ref:`simplify`
|
|
- ``resources/busmap_elec_s{simpl}.csv``: confer :ref:`simplify`
|
|
- ``networks/elec_s{simpl}.nc``: confer :ref:`simplify`
|
|
- ``data/custom_busmap_elec_s{simpl}_{clusters}.csv``: optional input
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``resources/regions_onshore_elec_s{simpl}_{clusters}.geojson``:
|
|
|
|
.. image:: img/regions_onshore_elec_s_X.png
|
|
:scale: 33 %
|
|
|
|
- ``resources/regions_offshore_elec_s{simpl}_{clusters}.geojson``:
|
|
|
|
.. image:: img/regions_offshore_elec_s_X.png
|
|
:scale: 33 %
|
|
|
|
- ``resources/busmap_elec_s{simpl}_{clusters}.csv``: Mapping of buses from ``networks/elec_s{simpl}.nc`` to ``networks/elec_s{simpl}_{clusters}.nc``;
|
|
- ``resources/linemap_elec_s{simpl}_{clusters}.csv``: Mapping of lines from ``networks/elec_s{simpl}.nc`` to ``networks/elec_s{simpl}_{clusters}.nc``;
|
|
- ``networks/elec_s{simpl}_{clusters}.nc``:
|
|
|
|
.. image:: img/elec_s_X.png
|
|
:scale: 40 %
|
|
|
|
Description
|
|
-----------
|
|
|
|
.. note::
|
|
|
|
**Why is clustering used both in** ``simplify_network`` **and** ``cluster_network`` **?**
|
|
|
|
Consider for example a network ``networks/elec_s100_50.nc`` in which
|
|
``simplify_network`` clusters the network to 100 buses and in a second
|
|
step ``cluster_network``` reduces it down to 50 buses.
|
|
|
|
In preliminary tests, it turns out, that the principal effect of
|
|
changing spatial resolution is actually only partially due to the
|
|
transmission network. It is more important to differentiate between
|
|
wind generators with higher capacity factors from those with lower
|
|
capacity factors, i.e. to have a higher spatial resolution in the
|
|
renewable generation than in the number of buses.
|
|
|
|
The two-step clustering allows to study this effect by looking at
|
|
networks like ``networks/elec_s100_50m.nc``. Note the additional
|
|
``m`` in the ``{cluster}`` wildcard. So in the example network
|
|
there are still up to 100 different wind generators.
|
|
|
|
In combination these two features allow you to study the spatial
|
|
resolution of the transmission network separately from the
|
|
spatial resolution of renewable generators.
|
|
|
|
**Is it possible to run the model without the** ``simplify_network`` **rule?**
|
|
|
|
No, the network clustering methods in the PyPSA module
|
|
`pypsa.networkclustering <https://github.com/PyPSA/PyPSA/blob/master/pypsa/networkclustering.py>`_
|
|
do not work reliably with multiple voltage levels and transformers.
|
|
|
|
.. tip::
|
|
The rule :mod:`cluster_networks` runs
|
|
for all ``scenario`` s in the configuration file
|
|
the rule :mod:`cluster_network`.
|
|
|
|
Exemplary unsolved network clustered to 512 nodes:
|
|
|
|
.. image:: img/elec_s_512.png
|
|
:scale: 40 %
|
|
:align: center
|
|
|
|
Exemplary unsolved network clustered to 256 nodes:
|
|
|
|
.. image:: img/elec_s_256.png
|
|
:scale: 40 %
|
|
:align: center
|
|
|
|
Exemplary unsolved network clustered to 128 nodes:
|
|
|
|
.. image:: img/elec_s_128.png
|
|
:scale: 40 %
|
|
:align: center
|
|
|
|
Exemplary unsolved network clustered to 37 nodes:
|
|
|
|
.. image:: img/elec_s_37.png
|
|
:scale: 40 %
|
|
:align: center
|
|
"""
|
|
|
|
import logging
|
|
import warnings
|
|
from functools import reduce
|
|
|
|
import geopandas as gpd
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pyomo.environ as po
|
|
import pypsa
|
|
import seaborn as sns
|
|
from _helpers import configure_logging, get_aggregation_strategies, update_p_nom_max
|
|
from pypsa.networkclustering import (
|
|
busmap_by_greedy_modularity,
|
|
busmap_by_hac,
|
|
busmap_by_kmeans,
|
|
get_clustering_from_busmap,
|
|
)
|
|
|
|
warnings.filterwarnings(action="ignore", category=UserWarning)
|
|
|
|
from add_electricity import load_costs
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def normed(x):
|
|
return (x / x.sum()).fillna(0.0)
|
|
|
|
|
|
def weighting_for_country(n, x):
|
|
conv_carriers = {"OCGT", "CCGT", "PHS", "hydro"}
|
|
gen = n.generators.loc[n.generators.carrier.isin(conv_carriers)].groupby(
|
|
"bus"
|
|
).p_nom.sum().reindex(n.buses.index, fill_value=0.0) + n.storage_units.loc[
|
|
n.storage_units.carrier.isin(conv_carriers)
|
|
].groupby(
|
|
"bus"
|
|
).p_nom.sum().reindex(
|
|
n.buses.index, fill_value=0.0
|
|
)
|
|
load = n.loads_t.p_set.mean().groupby(n.loads.bus).sum()
|
|
|
|
b_i = x.index
|
|
g = normed(gen.reindex(b_i, fill_value=0))
|
|
l = normed(load.reindex(b_i, fill_value=0))
|
|
|
|
w = g + l
|
|
return (w * (100.0 / w.max())).clip(lower=1.0).astype(int)
|
|
|
|
|
|
def get_feature_for_hac(n, buses_i=None, feature=None):
|
|
if buses_i is None:
|
|
buses_i = n.buses.index
|
|
|
|
if feature is None:
|
|
feature = "solar+onwind-time"
|
|
|
|
carriers = feature.split("-")[0].split("+")
|
|
if "offwind" in carriers:
|
|
carriers.remove("offwind")
|
|
carriers = np.append(
|
|
carriers, network.generators.carrier.filter(like="offwind").unique()
|
|
)
|
|
|
|
if feature.split("-")[1] == "cap":
|
|
feature_data = pd.DataFrame(index=buses_i, columns=carriers)
|
|
for carrier in carriers:
|
|
gen_i = n.generators.query("carrier == @carrier").index
|
|
attach = (
|
|
n.generators_t.p_max_pu[gen_i]
|
|
.mean()
|
|
.rename(index=n.generators.loc[gen_i].bus)
|
|
)
|
|
feature_data[carrier] = attach
|
|
|
|
if feature.split("-")[1] == "time":
|
|
feature_data = pd.DataFrame(columns=buses_i)
|
|
for carrier in carriers:
|
|
gen_i = n.generators.query("carrier == @carrier").index
|
|
attach = n.generators_t.p_max_pu[gen_i].rename(
|
|
columns=n.generators.loc[gen_i].bus
|
|
)
|
|
feature_data = pd.concat([feature_data, attach], axis=0)[buses_i]
|
|
|
|
feature_data = feature_data.T
|
|
# timestamp raises error in sklearn >= v1.2:
|
|
feature_data.columns = feature_data.columns.astype(str)
|
|
|
|
feature_data = feature_data.fillna(0)
|
|
|
|
return feature_data
|
|
|
|
|
|
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
|
"""
|
|
Determine the number of clusters per country.
|
|
"""
|
|
L = (
|
|
n.loads_t.p_set.mean()
|
|
.groupby(n.loads.bus)
|
|
.sum()
|
|
.groupby([n.buses.country, n.buses.sub_network])
|
|
.sum()
|
|
.pipe(normed)
|
|
)
|
|
|
|
N = n.buses.groupby(["country", "sub_network"]).size()
|
|
|
|
assert (
|
|
n_clusters >= len(N) and n_clusters <= N.sum()
|
|
), f"Number of clusters must be {len(N)} <= n_clusters <= {N.sum()} for this selection of countries."
|
|
|
|
if focus_weights is not None:
|
|
total_focus = sum(list(focus_weights.values()))
|
|
|
|
assert (
|
|
total_focus <= 1.0
|
|
), "The sum of focus weights must be less than or equal to 1."
|
|
|
|
for country, weight in focus_weights.items():
|
|
L[country] = weight / len(L[country])
|
|
|
|
remainder = [
|
|
c not in focus_weights.keys() for c in L.index.get_level_values("country")
|
|
]
|
|
L[remainder] = L.loc[remainder].pipe(normed) * (1 - total_focus)
|
|
|
|
logger.warning("Using custom focus weights for determining number of clusters.")
|
|
|
|
assert np.isclose(
|
|
L.sum(), 1.0, rtol=1e-3
|
|
), f"Country weights L must sum up to 1.0 when distributing clusters. Is {L.sum()}."
|
|
|
|
m = po.ConcreteModel()
|
|
|
|
def n_bounds(model, *n_id):
|
|
return (1, N[n_id])
|
|
|
|
m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers)
|
|
m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters))
|
|
m.objective = po.Objective(
|
|
expr=sum((m.n[i] - L.loc[i] * n_clusters) ** 2 for i in L.index),
|
|
sense=po.minimize,
|
|
)
|
|
|
|
opt = po.SolverFactory(solver_name)
|
|
if not opt.has_capability("quadratic_objective"):
|
|
logger.warning(
|
|
f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`."
|
|
)
|
|
opt = po.SolverFactory("ipopt")
|
|
|
|
results = opt.solve(m)
|
|
assert (
|
|
results["Solver"][0]["Status"] == "ok"
|
|
), f"Solver returned non-optimally: {results}"
|
|
|
|
return pd.Series(m.n.get_values(), index=L.index).round().astype(int)
|
|
|
|
|
|
def busmap_for_n_clusters(
|
|
n,
|
|
n_clusters,
|
|
solver_name,
|
|
focus_weights=None,
|
|
algorithm="kmeans",
|
|
feature=None,
|
|
**algorithm_kwds,
|
|
):
|
|
if algorithm == "kmeans":
|
|
algorithm_kwds.setdefault("n_init", 1000)
|
|
algorithm_kwds.setdefault("max_iter", 30000)
|
|
algorithm_kwds.setdefault("tol", 1e-6)
|
|
algorithm_kwds.setdefault("random_state", 0)
|
|
|
|
def fix_country_assignment_for_hac(n):
|
|
from scipy.sparse import csgraph
|
|
|
|
# overwrite country of nodes that are disconnected from their country-topology
|
|
for country in n.buses.country.unique():
|
|
m = n[n.buses.country == country].copy()
|
|
|
|
_, labels = csgraph.connected_components(
|
|
m.adjacency_matrix(), directed=False
|
|
)
|
|
|
|
component = pd.Series(labels, index=m.buses.index)
|
|
component_sizes = component.value_counts()
|
|
|
|
if len(component_sizes) > 1:
|
|
disconnected_bus = component[
|
|
component == component_sizes.index[-1]
|
|
].index[0]
|
|
|
|
neighbor_bus = n.lines.query(
|
|
"bus0 == @disconnected_bus or bus1 == @disconnected_bus"
|
|
).iloc[0][["bus0", "bus1"]]
|
|
new_country = list(
|
|
set(n.buses.loc[neighbor_bus].country) - set([country])
|
|
)[0]
|
|
|
|
logger.info(
|
|
f"overwriting country `{country}` of bus `{disconnected_bus}` "
|
|
f"to new country `{new_country}`, because it is disconnected "
|
|
"from its initial inter-country transmission grid."
|
|
)
|
|
n.buses.at[disconnected_bus, "country"] = new_country
|
|
return n
|
|
|
|
if algorithm == "hac":
|
|
feature = get_feature_for_hac(n, buses_i=n.buses.index, feature=feature)
|
|
n = fix_country_assignment_for_hac(n)
|
|
|
|
if (algorithm != "hac") and (feature is not None):
|
|
logger.warning(
|
|
f"Keyword argument feature is only valid for algorithm `hac`. "
|
|
f"Given feature `{feature}` will be ignored."
|
|
)
|
|
|
|
n.determine_network_topology()
|
|
|
|
n_clusters = distribute_clusters(
|
|
n, n_clusters, focus_weights=focus_weights, solver_name=solver_name
|
|
)
|
|
|
|
def busmap_for_country(x):
|
|
prefix = x.name[0] + x.name[1] + " "
|
|
logger.debug(f"Determining busmap for country {prefix[:-1]}")
|
|
if len(x) == 1:
|
|
return pd.Series(prefix + "0", index=x.index)
|
|
weight = weighting_for_country(n, x)
|
|
|
|
if algorithm == "kmeans":
|
|
return prefix + busmap_by_kmeans(
|
|
n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds
|
|
)
|
|
elif algorithm == "hac":
|
|
return prefix + busmap_by_hac(
|
|
n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index]
|
|
)
|
|
elif algorithm == "modularity":
|
|
return prefix + busmap_by_greedy_modularity(
|
|
n, n_clusters[x.name], buses_i=x.index
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"`algorithm` must be one of 'kmeans' or 'hac'. Is {algorithm}."
|
|
)
|
|
|
|
return (
|
|
n.buses.groupby(["country", "sub_network"], group_keys=False)
|
|
.apply(busmap_for_country)
|
|
.squeeze()
|
|
.rename("busmap")
|
|
)
|
|
|
|
|
|
def clustering_for_n_clusters(
|
|
n,
|
|
n_clusters,
|
|
custom_busmap=False,
|
|
aggregate_carriers=None,
|
|
line_length_factor=1.25,
|
|
aggregation_strategies=dict(),
|
|
solver_name="cbc",
|
|
algorithm="hac",
|
|
feature=None,
|
|
extended_link_costs=0,
|
|
focus_weights=None,
|
|
):
|
|
bus_strategies, generator_strategies = get_aggregation_strategies(
|
|
aggregation_strategies
|
|
)
|
|
|
|
if not isinstance(custom_busmap, pd.Series):
|
|
busmap = busmap_for_n_clusters(
|
|
n, n_clusters, solver_name, focus_weights, algorithm, feature
|
|
)
|
|
else:
|
|
busmap = custom_busmap
|
|
|
|
clustering = get_clustering_from_busmap(
|
|
n,
|
|
busmap,
|
|
bus_strategies=bus_strategies,
|
|
aggregate_generators_weighted=True,
|
|
aggregate_generators_carriers=aggregate_carriers,
|
|
aggregate_one_ports=["Load", "StorageUnit"],
|
|
line_length_factor=line_length_factor,
|
|
generator_strategies=generator_strategies,
|
|
scale_link_capital_costs=False,
|
|
)
|
|
|
|
if not n.links.empty:
|
|
nc = clustering.network
|
|
nc.links["underwater_fraction"] = (
|
|
n.links.eval("underwater_fraction * length").div(nc.links.length).dropna()
|
|
)
|
|
nc.links["capital_cost"] = nc.links["capital_cost"].add(
|
|
(nc.links.length - n.links.length).clip(lower=0).mul(extended_link_costs),
|
|
fill_value=0,
|
|
)
|
|
|
|
return clustering
|
|
|
|
|
|
def cluster_regions(busmaps, input=None, output=None):
|
|
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
|
|
|
|
for which in ("regions_onshore", "regions_offshore"):
|
|
regions = gpd.read_file(getattr(input, which))
|
|
regions = regions.reindex(columns=["name", "geometry"]).set_index("name")
|
|
regions_c = regions.dissolve(busmap)
|
|
regions_c.index.name = "name"
|
|
regions_c = regions_c.reset_index()
|
|
regions_c.to_file(getattr(output, which))
|
|
|
|
|
|
def plot_busmap_for_n_clusters(n, n_clusters, fn=None):
|
|
busmap = busmap_for_n_clusters(n, n_clusters)
|
|
cs = busmap.unique()
|
|
cr = sns.color_palette("hls", len(cs))
|
|
n.plot(bus_colors=busmap.map(dict(zip(cs, cr))))
|
|
if fn is not None:
|
|
plt.savefig(fn, bbox_inches="tight")
|
|
del cs, cr
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake("cluster_network", simpl="", clusters="5")
|
|
configure_logging(snakemake)
|
|
|
|
n = pypsa.Network(snakemake.input.network)
|
|
|
|
focus_weights = snakemake.config.get("focus_weights", None)
|
|
|
|
renewable_carriers = pd.Index(
|
|
[
|
|
tech
|
|
for tech in n.generators.carrier.unique()
|
|
if tech in snakemake.params["renewable"]
|
|
]
|
|
)
|
|
|
|
exclude_carriers = snakemake.params["clustering"]["cluster_network"].get(
|
|
"exclude_carriers", []
|
|
)
|
|
aggregate_carriers = set(n.generators.carrier) - set(exclude_carriers)
|
|
if snakemake.wildcards.clusters.endswith("m"):
|
|
n_clusters = int(snakemake.wildcards.clusters[:-1])
|
|
conventional = set(snakemake.params["conventional_carriers"])
|
|
aggregate_carriers = conventional.intersection(aggregate_carriers)
|
|
elif snakemake.wildcards.clusters == "all":
|
|
n_clusters = len(n.buses)
|
|
else:
|
|
n_clusters = int(snakemake.wildcards.clusters)
|
|
|
|
if n_clusters == len(n.buses):
|
|
# Fast-path if no clustering is necessary
|
|
busmap = n.buses.index.to_series()
|
|
linemap = n.lines.index.to_series()
|
|
clustering = pypsa.networkclustering.Clustering(
|
|
n, busmap, linemap, linemap, pd.Series(dtype="O")
|
|
)
|
|
else:
|
|
line_length_factor = snakemake.params["length_factor"]
|
|
Nyears = n.snapshot_weightings.objective.sum() / 8760
|
|
|
|
hvac_overhead_cost = load_costs(
|
|
snakemake.input.tech_costs,
|
|
snakemake.params["costs"],
|
|
snakemake.params["max_hours"],
|
|
Nyears,
|
|
).at["HVAC overhead", "capital_cost"]
|
|
|
|
def consense(x):
|
|
v = x.iat[0]
|
|
assert (
|
|
x == v
|
|
).all() or x.isnull().all(), "The `potential` configuration option must agree for all renewable carriers, for now!"
|
|
return v
|
|
|
|
aggregation_strategies = snakemake.params["clustering"].get(
|
|
"aggregation_strategies", {}
|
|
)
|
|
# translate str entries of aggregation_strategies to pd.Series functions:
|
|
aggregation_strategies = {
|
|
p: {k: getattr(pd.Series, v) for k, v in aggregation_strategies[p].items()}
|
|
for p in aggregation_strategies.keys()
|
|
}
|
|
|
|
custom_busmap = snakemake.params["custom_busmap"]
|
|
if custom_busmap:
|
|
custom_busmap = pd.read_csv(
|
|
snakemake.input.custom_busmap, index_col=0, squeeze=True
|
|
)
|
|
custom_busmap.index = custom_busmap.index.astype(str)
|
|
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
|
|
|
|
cluster_config = snakemake.config.get("clustering", {}).get(
|
|
"cluster_network", {}
|
|
)
|
|
clustering = clustering_for_n_clusters(
|
|
n,
|
|
n_clusters,
|
|
custom_busmap,
|
|
aggregate_carriers,
|
|
line_length_factor,
|
|
aggregation_strategies,
|
|
snakemake.params["solver_name"],
|
|
cluster_config.get("algorithm", "hac"),
|
|
cluster_config.get("feature", "solar+onwind-time"),
|
|
hvac_overhead_cost,
|
|
focus_weights,
|
|
)
|
|
|
|
update_p_nom_max(clustering.network)
|
|
|
|
clustering.network.meta = dict(
|
|
snakemake.config, **dict(wildcards=dict(snakemake.wildcards))
|
|
)
|
|
clustering.network.export_to_netcdf(snakemake.output.network)
|
|
for attr in (
|
|
"busmap",
|
|
"linemap",
|
|
): # also available: linemap_positive, linemap_negative
|
|
getattr(clustering, attr).to_csv(snakemake.output[attr])
|
|
|
|
cluster_regions((clustering.busmap,), snakemake.input, snakemake.output)
|