pypsa-eur/scripts/add_brownfield.py
2022-04-12 10:04:27 +02:00

135 lines
4.9 KiB
Python

# coding: utf-8
import logging
logger = logging.getLogger(__name__)
import pandas as pd
idx = pd.IndexSlice
import pypsa
import yaml
import numpy as np
from add_existing_baseyear import add_build_year_to_new_assets
from helper import override_component_attrs
from solve_network import basename
def add_brownfield(n, n_p, year):
print("adding brownfield")
for c in n_p.iterate_components(["Link", "Generator", "Store"]):
attr = "e" if c.name == "Store" else "p"
# first, remove generators, links and stores that track
# CO2 or global EU values since these are already in n
n_p.mremove(
c.name,
c.df.index[c.df.lifetime==np.inf]
)
# remove assets whose build_year + lifetime < year
n_p.mremove(
c.name,
c.df.index[c.df.build_year + c.df.lifetime < year]
)
# remove assets if their optimized nominal capacity is lower than a threshold
# since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible
chp_heat = c.df.index[(
c.df[attr + "_nom_extendable"]
& c.df.index.str.contains("urban central")
& c.df.index.str.contains("CHP")
& c.df.index.str.contains("heat")
)]
threshold = snakemake.config['existing_capacities']['threshold_capacity']
if not chp_heat.empty:
threshold_chp_heat = (threshold
* c.df.efficiency[chp_heat.str.replace("heat", "electric")].values
* c.df.p_nom_ratio[chp_heat.str.replace("heat", "electric")].values
/ c.df.efficiency[chp_heat].values
)
n_p.mremove(
c.name,
chp_heat[c.df.loc[chp_heat, attr + "_nom_opt"] < threshold_chp_heat]
)
n_p.mremove(
c.name,
c.df.index[c.df[attr + "_nom_extendable"] & ~c.df.index.isin(chp_heat) & (c.df[attr + "_nom_opt"] < threshold)]
)
# copy over assets but fix their capacity
c.df[attr + "_nom"] = c.df[attr + "_nom_opt"]
c.df[attr + "_nom_extendable"] = False
n.import_components_from_dataframe(c.df, c.name)
# copy time-dependent
selection = (
n.component_attrs[c.name].type.str.contains("series")
& n.component_attrs[c.name].status.str.contains("Input")
)
for tattr in n.component_attrs[c.name].index[selection]:
n.import_series_from_dataframe(c.pnl[tattr], c.name, tattr)
# deal with gas network
pipe_carrier = ['gas pipeline']
if snakemake.config["sector"]['H2_retrofit']:
# drop capacities of previous year to avoid duplicating
to_drop = n.links.carrier.isin(pipe_carrier) & (n.links.build_year!=year)
n.mremove("Link", n.links.loc[to_drop].index)
# subtract the already retrofitted from today's gas grid capacity
h2_retrofitted_fixed_i = n.links[(n.links.carrier=='H2 pipeline retrofitted') & (n.links.build_year!=year)].index
gas_pipes_i = n.links[n.links.carrier.isin(pipe_carrier)].index
CH4_per_H2 = 1 / snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"]
fr = "H2 pipeline retrofitted"
to = "gas pipeline"
# today's pipe capacity
pipe_capacity = n.links.loc[gas_pipes_i, 'p_nom']
# already retrofitted capacity from gas -> H2
already_retrofitted = (n.links.loc[h2_retrofitted_fixed_i, 'p_nom']
.rename(lambda x: basename(x).replace(fr, to)).groupby(level=0).sum())
remaining_capacity = pipe_capacity - CH4_per_H2 * already_retrofitted.reindex(index=pipe_capacity.index).fillna(0)
n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity
else:
new_pipes = n.links.carrier.isin(pipe_carrier) & (n.links.build_year==year)
n.links.loc[new_pipes, "p_nom"] = 0.
n.links.loc[new_pipes, "p_nom_min"] = 0.
#%%
if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'add_brownfield',
simpl='',
clusters="37",
opts="",
lv=1.0,
sector_opts='168H-T-H-B-I-solar+p3-dist1',
planning_horizons=2030,
)
print(snakemake.input.network_p)
logging.basicConfig(level=snakemake.config['logging_level'])
year = int(snakemake.wildcards.planning_horizons)
overrides = override_component_attrs(snakemake.input.overrides)
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
add_build_year_to_new_assets(n, year)
n_p = pypsa.Network(snakemake.input.network_p, override_component_attrs=overrides)
add_brownfield(n, n_p, year)
n.export_to_netcdf(snakemake.output[0])