067d259ff6
* and reduce corresponding sections in readme * and modify environment docs * and add bibtex support (tentative)
278 lines
12 KiB
Python
278 lines
12 KiB
Python
# coding: utf-8
|
|
"""
|
|
Create networks clustered to `cluster` number of zones with aggregated buses, generators and transmission corridors
|
|
|
|
Summary
|
|
-------
|
|
|
|
The rule cluster_network instead clusters the network to a given number of buses.
|
|
|
|
-Why is this cluster function used?
|
|
-Why the user can set a number behind the elec_sXXX for simplification?
|
|
|
|
As you found out for yourself, elec_s100_50.nc for example is a network in which simplify_network clusters the network to 100 buses and in a second step cluster_network reduces it down to 50 buses.
|
|
|
|
Well, let me provide a use-case where this makes sense:
|
|
|
|
In preliminary tests, it turns out, that the principal effect of changing spatial resolution is actually only partially due to the transmission network. It is more important to differentiate between wind generators with higher capacity factors from those with lower capacity factors, ie to have a higher spatial resolution in the renewable generation than in the number of buses.
|
|
|
|
This two-step clustering can take advantage of that fact (and allows to study it)
|
|
by looking at networks like networks/elec_s100_50m.nc (note the additional m in the cluster wildcard). For this example simplify_network clusters to 100 buses and then cluster_network clusters to 50m buses, which means 50 buses for the network topology but only moving instead of aggregating the generators to the clustered buses. So in this network you still have up to 100 different wind generators, 2 at each bus on average.
|
|
|
|
In combination these two features allow you to study the spatial resolution of the transmission network separately from the spatial resolution of renewable generators. Beware: There is no clear evidence telling you what is a good representation of the full model. These options are under active study.
|
|
|
|
Why we have a cluster function inside of the simplification method?
|
|
|
|
Why are you asking three times the same question?
|
|
|
|
Is it possible to run the model without the simplification method / rule?
|
|
I tryed to run the snakemake without the s for simplification.
|
|
|
|
No, the network clustering methods in PyPSA's networkclustering module don't work reliably with multiple voltage levels and transformers. If it is somehow necessary for you we could include switches to make Step 2 and 3 optional as well. But that's about it.
|
|
|
|
"""
|
|
|
|
import pandas as pd
|
|
idx = pd.IndexSlice
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
import os
|
|
import numpy as np
|
|
import scipy as sp
|
|
from scipy.sparse.csgraph import connected_components
|
|
import xarray as xr
|
|
import geopandas as gpd
|
|
import shapely
|
|
import networkx as nx
|
|
from shutil import copyfile
|
|
|
|
from six import iteritems
|
|
from six.moves import reduce
|
|
|
|
import pyomo.environ as po
|
|
|
|
import pypsa
|
|
from pypsa.io import import_components_from_dataframe, import_series_from_dataframe
|
|
from pypsa.networkclustering import (busmap_by_stubs, busmap_by_kmeans,
|
|
_make_consense, get_clustering_from_busmap,
|
|
aggregategenerators, aggregateoneport)
|
|
def normed(x):
|
|
return (x/x.sum()).fillna(0.)
|
|
|
|
def weighting_for_country(n, x):
|
|
conv_carriers = {'OCGT','CCGT','PHS', 'hydro'}
|
|
gen = (n
|
|
.generators.loc[n.generators.carrier.isin(conv_carriers)]
|
|
.groupby('bus').p_nom.sum()
|
|
.reindex(n.buses.index, fill_value=0.) +
|
|
n
|
|
.storage_units.loc[n.storage_units.carrier.isin(conv_carriers)]
|
|
.groupby('bus').p_nom.sum()
|
|
.reindex(n.buses.index, fill_value=0.))
|
|
load = n.loads_t.p_set.mean().groupby(n.loads.bus).sum()
|
|
|
|
b_i = x.index
|
|
g = normed(gen.reindex(b_i, fill_value=0))
|
|
l = normed(load.reindex(b_i, fill_value=0))
|
|
|
|
w= g + l
|
|
return (w * (100. / w.max())).clip(lower=1.).astype(int)
|
|
|
|
|
|
## Plot weighting for Germany
|
|
|
|
def plot_weighting(n, country, country_shape=None):
|
|
n.plot(bus_sizes=(2*weighting_for_country(n.buses.loc[n.buses.country == country])).reindex(n.buses.index, fill_value=1))
|
|
if country_shape is not None:
|
|
plt.xlim(country_shape.bounds[0], country_shape.bounds[2])
|
|
plt.ylim(country_shape.bounds[1], country_shape.bounds[3])
|
|
|
|
|
|
# # Determining the number of clusters per country
|
|
|
|
def distribute_clusters(n, n_clusters, solver_name=None):
|
|
if solver_name is None:
|
|
solver_name = snakemake.config['solver']['solver']['name']
|
|
|
|
L = (n.loads_t.p_set.mean()
|
|
.groupby(n.loads.bus).sum()
|
|
.groupby([n.buses.country, n.buses.sub_network]).sum()
|
|
.pipe(normed))
|
|
|
|
N = n.buses.groupby(['country', 'sub_network']).size()
|
|
|
|
assert n_clusters >= len(N) and n_clusters <= N.sum(), \
|
|
"Number of clusters must be {} <= n_clusters <= {} for this selection of countries.".format(len(N), N.sum())
|
|
|
|
m = po.ConcreteModel()
|
|
def n_bounds(model, *n_id):
|
|
return (1, N[n_id])
|
|
m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers)
|
|
m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters))
|
|
m.objective = po.Objective(expr=sum((m.n[i] - L.loc[i]*n_clusters)**2 for i in L.index),
|
|
sense=po.minimize)
|
|
|
|
opt = po.SolverFactory(solver_name)
|
|
if not opt.has_capability('quadratic_objective'):
|
|
logger.warn(f'The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`.')
|
|
opt = po.SolverFactory('ipopt')
|
|
|
|
results = opt.solve(m)
|
|
assert results['Solver'][0]['Status'].key == 'ok', "Solver returned non-optimally: {}".format(results)
|
|
|
|
return pd.Series(m.n.get_values(), index=L.index).astype(int)
|
|
|
|
def busmap_for_n_clusters(n, n_clusters, solver_name, algorithm="kmeans", **algorithm_kwds):
|
|
if algorithm == "kmeans":
|
|
algorithm_kwds.setdefault('n_init', 1000)
|
|
algorithm_kwds.setdefault('max_iter', 30000)
|
|
algorithm_kwds.setdefault('tol', 1e-6)
|
|
|
|
n.determine_network_topology()
|
|
|
|
n_clusters = distribute_clusters(n, n_clusters, solver_name=solver_name)
|
|
|
|
def reduce_network(n, buses):
|
|
nr = pypsa.Network()
|
|
nr.import_components_from_dataframe(buses, "Bus")
|
|
nr.import_components_from_dataframe(n.lines.loc[n.lines.bus0.isin(buses.index) & n.lines.bus1.isin(buses.index)], "Line")
|
|
return nr
|
|
|
|
def busmap_for_country(x):
|
|
prefix = x.name[0] + x.name[1] + ' '
|
|
logger.debug("Determining busmap for country {}".format(prefix[:-1]))
|
|
if len(x) == 1:
|
|
return pd.Series(prefix + '0', index=x.index)
|
|
weight = weighting_for_country(n, x)
|
|
|
|
if algorithm == "kmeans":
|
|
return prefix + busmap_by_kmeans(n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds)
|
|
elif algorithm == "spectral":
|
|
return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
|
elif algorithm == "louvain":
|
|
return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
|
else:
|
|
raise ArgumentError("`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'")
|
|
|
|
return (n.buses.groupby(['country', 'sub_network'], group_keys=False, squeeze=True)
|
|
.apply(busmap_for_country).rename('busmap'))
|
|
|
|
def plot_busmap_for_n_clusters(n, n_clusters=50):
|
|
busmap = busmap_for_n_clusters(n, n_clusters)
|
|
cs = busmap.unique()
|
|
cr = sns.color_palette("hls", len(cs))
|
|
n.plot(bus_colors=busmap.map(dict(zip(cs, cr))))
|
|
del cs, cr
|
|
|
|
def clustering_for_n_clusters(n, n_clusters, aggregate_carriers=None,
|
|
line_length_factor=1.25, potential_mode='simple',
|
|
solver_name="cbc", algorithm="kmeans"):
|
|
|
|
if potential_mode == 'simple':
|
|
p_nom_max_strategy = np.sum
|
|
elif potential_mode == 'conservative':
|
|
p_nom_max_strategy = np.min
|
|
else:
|
|
raise AttributeError("potential_mode should be one of 'simple' or 'conservative', "
|
|
"but is '{}'".format(potential_mode))
|
|
|
|
clustering = get_clustering_from_busmap(
|
|
n, busmap_for_n_clusters(n, n_clusters, solver_name, algorithm),
|
|
bus_strategies=dict(country=_make_consense("Bus", "country")),
|
|
aggregate_generators_weighted=True,
|
|
aggregate_generators_carriers=aggregate_carriers,
|
|
aggregate_one_ports=["Load", "StorageUnit"],
|
|
line_length_factor=line_length_factor,
|
|
generator_strategies={'p_nom_max': p_nom_max_strategy}
|
|
)
|
|
|
|
return clustering
|
|
|
|
def save_to_geojson(s, fn):
|
|
if os.path.exists(fn):
|
|
os.unlink(fn)
|
|
df = s.reset_index()
|
|
schema = {**gpd.io.file.infer_schema(df), 'geometry': 'Unknown'}
|
|
df.to_file(fn, driver='GeoJSON', schema=schema)
|
|
|
|
def cluster_regions(busmaps, input=None, output=None):
|
|
if input is None: input = snakemake.input
|
|
if output is None: output = snakemake.output
|
|
|
|
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
|
|
|
|
for which in ('regions_onshore', 'regions_offshore'):
|
|
regions = gpd.read_file(getattr(input, which)).set_index('name')
|
|
geom_c = regions.geometry.groupby(busmap).apply(shapely.ops.cascaded_union)
|
|
regions_c = gpd.GeoDataFrame(dict(geometry=geom_c))
|
|
regions_c.index.name = 'name'
|
|
save_to_geojson(regions_c, getattr(output, which))
|
|
|
|
if __name__ == "__main__":
|
|
# Detect running outside of snakemake and mock snakemake for testing
|
|
if 'snakemake' not in globals():
|
|
from vresutils.snakemake import MockSnakemake, Dict
|
|
snakemake = MockSnakemake(
|
|
wildcards=Dict(network='elec', simpl='', clusters='45'),
|
|
input=Dict(
|
|
network='networks/{network}_s{simpl}.nc',
|
|
regions_onshore='resources/regions_onshore_{network}_s{simpl}.geojson',
|
|
regions_offshore='resources/regions_offshore_{network}_s{simpl}.geojson',
|
|
clustermaps='resources/clustermaps_{network}_s{simpl}.h5'
|
|
),
|
|
output=Dict(
|
|
network='networks/{network}_s{simpl}_{clusters}.nc',
|
|
regions_onshore='resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson',
|
|
regions_offshore='resources/regions_offshore_{network}_s{simpl}_{clusters}.geojson',
|
|
clustermaps='resources/clustermaps_{network}_s{simpl}_{clusters}.h5'
|
|
)
|
|
)
|
|
|
|
logging.basicConfig(level=snakemake.config['logging_level'])
|
|
|
|
n = pypsa.Network(snakemake.input.network)
|
|
|
|
renewable_carriers = pd.Index([tech
|
|
for tech in n.generators.carrier.unique()
|
|
if tech.split('-', 2)[0] in snakemake.config['renewable']])
|
|
|
|
if snakemake.wildcards.clusters.endswith('m'):
|
|
n_clusters = int(snakemake.wildcards.clusters[:-1])
|
|
aggregate_carriers = pd.Index(n.generators.carrier.unique()).difference(renewable_carriers)
|
|
else:
|
|
n_clusters = int(snakemake.wildcards.clusters)
|
|
aggregate_carriers = None # All
|
|
|
|
if n_clusters == len(n.buses):
|
|
# Fast-path if no clustering is necessary
|
|
busmap = n.buses.index.to_series()
|
|
linemap = n.lines.index.to_series()
|
|
clustering = pypsa.networkclustering.Clustering(n, busmap, linemap, linemap, pd.Series(dtype='O'))
|
|
else:
|
|
line_length_factor = snakemake.config['lines']['length_factor']
|
|
|
|
def consense(x):
|
|
v = x.iat[0]
|
|
assert ((x == v).all() or x.isnull().all()), (
|
|
"The `potential` configuration option must agree for all renewable carriers, for now!"
|
|
)
|
|
return v
|
|
potential_mode = consense(pd.Series([snakemake.config['renewable'][tech]['potential']
|
|
for tech in renewable_carriers]))
|
|
clustering = clustering_for_n_clusters(n, n_clusters, aggregate_carriers,
|
|
line_length_factor=line_length_factor,
|
|
potential_mode=potential_mode,
|
|
solver_name=snakemake.config['solving']['solver']['name'])
|
|
|
|
clustering.network.export_to_netcdf(snakemake.output.network)
|
|
with pd.HDFStore(snakemake.output.clustermaps, mode='w') as store:
|
|
with pd.HDFStore(snakemake.input.clustermaps, mode='r') as clustermaps:
|
|
for attr in clustermaps.keys():
|
|
store.put(attr, clustermaps[attr], format="table", index=False)
|
|
for attr in ('busmap', 'linemap', 'linemap_positive', 'linemap_negative'):
|
|
store.put(attr, getattr(clustering, attr), format="table", index=False)
|
|
|
|
cluster_regions((clustering.busmap,))
|