pypsa-eur/scripts/solve_network.py
2019-06-18 13:18:59 +02:00

291 lines
13 KiB
Python

import numpy as np
import pandas as pd
import logging
logger = logging.getLogger(__name__)
import gc
import os
import pypsa
from pypsa.descriptors import free_output_series_dataframes
# Suppress logging of the slack bus choices
pypsa.pf.logger.setLevel(logging.WARNING)
from vresutils.benchmark import memory_logger
def patch_pyomo_tmpdir(tmpdir):
# PYOMO should write its lp files into tmp here
import os
if not os.path.isdir(tmpdir):
os.mkdir(tmpdir)
from pyutilib.services import TempfileManager
TempfileManager.tempdir = tmpdir
def prepare_network(n, solve_opts=None):
if solve_opts is None:
solve_opts = snakemake.config['solving']['options']
if 'clip_p_max_pu' in solve_opts:
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
if solve_opts.get('load_shedding'):
n.add("Carrier", "Load")
n.madd("Generator", n.buses.index, " load",
bus=n.buses.index,
carrier='load',
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=1e2, # Eur/kWh
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
p_nom=1e9 # kW
)
if solve_opts.get('noisy_costs'):
for t in n.iterate_components(n.one_port_components):
#if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if 'marginal_cost' in t.df:
t.df['marginal_cost'] += 1e-2 + 2e-3*(np.random.random(len(t.df)) - 0.5)
for t in n.iterate_components(['Line', 'Link']):
t.df['capital_cost'] += (1e-1 + 2e-2*(np.random.random(len(t.df)) - 0.5)) * t.df['length']
if solve_opts.get('nhours'):
nhours = solve_opts['nhours']
n.set_snapshots(n.snapshots[:nhours])
n.snapshot_weightings[:] = 8760./nhours
return n
def add_opts_constraints(n, opts=None):
if opts is None:
opts = snakemake.wildcards.opts.split('-')
if 'BAU' in opts:
mincaps = snakemake.config['electricity']['BAU_mincapacities']
def bau_mincapacities_rule(model, carrier):
gens = n.generators.index[n.generators.p_nom_extendable & (n.generators.carrier == carrier)]
return sum(model.generator_p_nom[gen] for gen in gens) >= mincaps[carrier]
n.model.bau_mincapacities = pypsa.opt.Constraint(list(mincaps), rule=bau_mincapacities_rule)
if 'SAFE' in opts:
peakdemand = (1. + snakemake.config['electricity']['SAFE_reservemargin']) * n.loads_t.p_set.sum(axis=1).max()
conv_techs = snakemake.config['plotting']['conv_techs']
exist_conv_caps = n.generators.loc[n.generators.carrier.isin(conv_techs) & ~n.generators.p_nom_extendable, 'p_nom'].sum()
ext_gens_i = n.generators.index[n.generators.carrier.isin(conv_techs) & n.generators.p_nom_extendable]
n.model.safe_peakdemand = pypsa.opt.Constraint(expr=sum(n.model.generator_p_nom[gen] for gen in ext_gens_i) >= peakdemand - exist_conv_caps)
def add_country_carrier_generation_constraints(n, opts=None):
agg_p_nom_minmax = pd.read_csv("data/agg_p_nom_minmax.csv", index_col=list(range(2)))
gen_country = n.generators.bus.map(n.buses.country)
def agg_p_nom_min_rule(model, country, carrier):
return sum(model.generator_p_nom[gen]
for gen in n.generators.index[(gen_country == country) & (n.generators.carrier == carrier)]) >= agg_p_nom_minmax.at[(country, carrier),'min']
def agg_p_nom_max_rule(model, country, carrier):
return sum(model.generator_p_nom[gen]
for gen in n.generators.index[(gen_country == country) & (n.generators.carrier == carrier)]) <= agg_p_nom_minmax.at[(country, carrier),'max']
n.model.agg_p_nom_min = pypsa.opt.Constraint(list(agg_p_nom_minmax.index), rule=agg_p_nom_min_rule)
n.model.agg_p_nom_max = pypsa.opt.Constraint(list(agg_p_nom_minmax.index), rule=agg_p_nom_max_rule)
def add_lv_constraint(n):
line_volume = getattr(n, 'line_volume_limit', None)
if line_volume is not None and not np.isinf(line_volume):
links_dc_ext_i = n.links.index[(n.links.carrier == 'DC') & n.links.p_nom_extendable] if not n.links.empty else pd.Index([])
n.model.line_volume_constraint = pypsa.opt.Constraint(
expr=((sum(n.model.passive_branch_s_nom["Line",line]*n.lines.at[line,"length"]
for line in n.lines.index[n.lines.s_nom_extendable]) +
sum(n.model.link_p_nom[link]*n.links.at[link,"length"]
for link in links_dc_ext_i))
<= line_volume)
)
def add_lc_constraint(n):
line_cost = getattr(n, 'line_cost_limit', None)
if line_cost is not None and not np.isinf(line_cost):
links_dc_ext_i = n.links.index[(n.links.carrier == 'DC') & n.links.p_nom_extendable] if not n.links.empty else pd.Index([])
n.model.line_cost_constraint = pypsa.opt.Constraint(
expr=((sum(n.model.passive_branch_s_nom["Line",line]*n.lines.at[line,"capital_cost_lc"]
for line in n.lines.index[n.lines.s_nom_extendable]) +
sum(n.model.link_p_nom[link]*n.links.at[link,"capital_cost_lc"]
for link in links_dc_ext_i))
<= line_cost)
)
def add_eps_storage_constraint(n):
if not hasattr(n, 'epsilon'):
n.epsilon = 1e-5
fix_sus_i = n.storage_units.index[~ n.storage_units.p_nom_extendable]
n.model.objective.expr += sum(n.epsilon * n.model.state_of_charge[su, n.snapshots[0]] for su in fix_sus_i)
def fix_branches(n, lines_s_nom=None, links_p_nom=None):
if lines_s_nom is not None and len(lines_s_nom) > 0:
for l, s_nom in lines_s_nom.iteritems():
n.model.passive_branch_s_nom["Line", l].fix(s_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.passive_branch_s_nom)
if links_p_nom is not None and len(links_p_nom) > 0:
for l, p_nom in links_p_nom.iteritems():
n.model.link_p_nom[l].fix(p_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.link_p_nom)
def solve_network(n, config=None, solver_log=None, opts=None, callback=None):
if config is None:
config = snakemake.config['solving']
solve_opts = config['options']
solver_options = config['solver'].copy()
if solver_log is None:
solver_log = snakemake.log.solver
solver_name = solver_options.pop('name')
def extra_postprocessing(n, snapshots, duals):
if hasattr(n, 'line_volume_limit') and hasattr(n.model, 'line_volume_constraint'):
cdata = pd.Series(list(n.model.line_volume_constraint.values()),
index=list(n.model.line_volume_constraint.keys()))
n.line_volume_limit_dual = -cdata.map(duals).sum()
if hasattr(n, 'line_cost_limit') and hasattr(n.model, 'line_cost_constraint'):
cdata = pd.Series(list(n.model.line_cost_constraint.values()),
index=list(n.model.line_cost_constraint.keys()))
n.line_cost_limit_dual = -cdata.map(duals).sum()
def run_lopf(n, allow_warning_status=False, fix_ext_lines=False):
free_output_series_dataframes(n)
pypsa.opf.network_lopf_build_model(n, formulation=solve_opts['formulation'])
add_opts_constraints(n, opts)
if not fix_ext_lines:
add_lv_constraint(n)
add_lc_constraint(n)
pypsa.opf.network_lopf_prepare_solver(n, solver_name=solver_name)
if fix_ext_lines:
fix_branches(n,
lines_s_nom=n.lines.loc[n.lines.s_nom_extendable, 's_nom_opt'],
links_p_nom=n.links.loc[n.links.p_nom_extendable, 'p_nom_opt'])
# Firing up solve will increase memory consumption tremendously, so
# make sure we freed everything we can
gc.collect()
status, termination_condition = \
pypsa.opf.network_lopf_solve(n,
solver_logfile=solver_log,
solver_options=solver_options,
formulation=solve_opts['formulation'],
extra_postprocessing=extra_postprocessing
#free_memory={'pypsa'}
)
assert status == "ok" or allow_warning_status and status == 'warning', \
("network_lopf did abort with status={} "
"and termination_condition={}"
.format(status, termination_condition))
return status, termination_condition
iteration = 0
lines_ext_b = n.lines.s_nom_extendable
if lines_ext_b.any():
# puh: ok, we need to iterate, since there is a relation
# between s/p_nom and r, x for branches.
msq_threshold = 0.01
lines = pd.DataFrame(n.lines[['r', 'x', 'type', 'num_parallel']])
lines['s_nom'] = (
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
n.lines.bus0.map(n.buses.v_nom)
).where(n.lines.type != '', n.lines['s_nom'])
lines_ext_typed_b = (n.lines.type != '') & lines_ext_b
lines_ext_untyped_b = (n.lines.type == '') & lines_ext_b
def update_line_parameters(n, zero_lines_below=10):
if zero_lines_below > 0:
n.lines.loc[n.lines.s_nom_opt < zero_lines_below, 's_nom_opt'] = 0.
n.links.loc[n.links.p_nom_opt < zero_lines_below, 'p_nom_opt'] = 0.
if lines_ext_untyped_b.any():
for attr in ('r', 'x'):
n.lines.loc[lines_ext_untyped_b, attr] = (
lines[attr].multiply(lines['s_nom']/n.lines['s_nom_opt'])
)
if lines_ext_typed_b.any():
n.lines.loc[lines_ext_typed_b, 'num_parallel'] = (
n.lines['s_nom_opt']/lines['s_nom']
)
logger.debug("lines.num_parallel={}".format(n.lines.loc[lines_ext_typed_b, 'num_parallel']))
iteration += 1
lines['s_nom_opt'] = lines['s_nom'] * n.lines['num_parallel'].where(n.lines.type != '', 1.)
status, termination_condition = run_lopf(n, allow_warning_status=True)
if callback is not None: callback(n, iteration, status)
def msq_diff(n):
lines_err = np.sqrt(((n.lines['s_nom_opt'] - lines['s_nom_opt'])**2).mean())/lines['s_nom_opt'].mean()
logger.info("Mean square difference after iteration {} is {}".format(iteration, lines_err))
return lines_err
min_iterations = solve_opts.get('min_iterations', 2)
max_iterations = solve_opts.get('max_iterations', 999)
while msq_diff(n) > msq_threshold or iteration < min_iterations:
if iteration >= max_iterations:
logger.info("Iteration {} beyond max_iterations {}. Stopping ...".format(iteration, max_iterations))
break
update_line_parameters(n)
lines['s_nom_opt'] = n.lines['s_nom_opt']
iteration += 1
status, termination_condition = run_lopf(n, allow_warning_status=True)
if callback is not None: callback(n, iteration, status)
update_line_parameters(n, zero_lines_below=100)
logger.info("Starting last run with fixed extendable lines")
iteration += 1
status, termination_condition = run_lopf(n, fix_ext_lines=True)
if callback is not None: callback(n, iteration, status)
return n
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
wildcards=dict(network='elec', simpl='', clusters='45', lv='1.0', opts='Co2L-3H'),
input=["networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
output=["results/networks/s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
log=dict(solver="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_solver.log",
python="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_python.log")
)
tmpdir = snakemake.config['solving'].get('tmpdir')
if tmpdir is not None:
patch_pyomo_tmpdir(tmpdir)
logging.basicConfig(filename=snakemake.log.python,
level=snakemake.config['logging_level'])
with memory_logger(filename=getattr(snakemake.log, 'memory', None), interval=30.) as mem:
n = pypsa.Network(snakemake.input[0])
n = prepare_network(n)
n = solve_network(n)
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))