pypsa-eur/scripts/solve_network.py

275 lines
9.8 KiB
Python

"""Solve network."""
import pypsa
import numpy as np
import pandas as pd
from pypsa.linopt import get_var, linexpr, define_constraints
from pypsa.linopf import network_lopf, ilopf
from vresutils.benchmark import memory_logger
from helper import override_component_attrs
import logging
logger = logging.getLogger(__name__)
pypsa.pf.logger.setLevel(logging.WARNING)
def add_land_use_constraint(n):
if 'm' in snakemake.wildcards.clusters:
_add_land_use_constraint_m(n)
else:
_add_land_use_constraint(n)
def _add_land_use_constraint(n):
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
n.generators.loc[existing.index,"p_nom_max"] -= existing
n.generators.p_nom_max.clip(lower=0, inplace=True)
def _add_land_use_constraint_m(n):
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
grouping_years = snakemake.config["existing_capacities"]["grouping_years"]
current_horizon = snakemake.wildcards.planning_horizons
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"]
ind = list(set([i.split(sep=" ")[0] + ' ' + i.split(sep=" ")[1] for i in existing.index]))
previous_years = [
str(y) for y in
planning_horizons + grouping_years
if y < int(snakemake.wildcards.planning_horizons)
]
for p_year in previous_years:
ind2 = [i for i in ind if i + " " + carrier + "-" + p_year in existing.index]
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[sel_p_year].rename(lambda x: x[:-4] + current_horizon)
n.generators.p_nom_max.clip(lower=0, inplace=True)
def prepare_network(n, solve_opts=None):
if 'clip_p_max_pu' in solve_opts:
for df in (n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow):
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
if solve_opts.get('load_shedding'):
n.add("Carrier", "Load")
n.madd("Generator", n.buses.index, " load",
bus=n.buses.index,
carrier='load',
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=1e2, # Eur/kWh
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
p_nom=1e9 # kW
)
if solve_opts.get('noisy_costs'):
for t in n.iterate_components():
#if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if 'marginal_cost' in t.df:
np.random.seed(174)
t.df['marginal_cost'] += 1e-2 + 2e-3 * (np.random.random(len(t.df)) - 0.5)
for t in n.iterate_components(['Line', 'Link']):
np.random.seed(123)
t.df['capital_cost'] += (1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)) * t.df['length']
if solve_opts.get('nhours'):
nhours = solve_opts['nhours']
n.set_snapshots(n.snapshots[:nhours])
n.snapshot_weightings[:] = 8760./nhours
if snakemake.config['foresight'] == 'myopic':
add_land_use_constraint(n)
return n
def add_battery_constraints(n):
chargers_b = n.links.carrier.str.contains("battery charger")
chargers = n.links.index[chargers_b & n.links.p_nom_extendable]
dischargers = chargers.str.replace("charger", "discharger")
if chargers.empty or ('Link', 'p_nom') not in n.variables.index:
return
link_p_nom = get_var(n, "Link", "p_nom")
lhs = linexpr((1,link_p_nom[chargers]),
(-n.links.loc[dischargers, "efficiency"].values,
link_p_nom[dischargers].values))
define_constraints(n, lhs, "=", 0, 'Link', 'charger_ratio')
def add_chp_constraints(n):
electric_bool = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("electric"))
heat_bool = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("heat"))
electric = n.links.index[electric_bool]
heat = n.links.index[heat_bool]
electric_ext = n.links.index[electric_bool & n.links.p_nom_extendable]
heat_ext = n.links.index[heat_bool & n.links.p_nom_extendable]
electric_fix = n.links.index[electric_bool & ~n.links.p_nom_extendable]
heat_fix = n.links.index[heat_bool & ~n.links.p_nom_extendable]
link_p = get_var(n, "Link", "p")
if not electric_ext.empty:
link_p_nom = get_var(n, "Link", "p_nom")
#ratio of output heat to electricity set by p_nom_ratio
lhs = linexpr((n.links.loc[electric_ext, "efficiency"]
*n.links.loc[electric_ext, "p_nom_ratio"],
link_p_nom[electric_ext]),
(-n.links.loc[heat_ext, "efficiency"].values,
link_p_nom[heat_ext].values))
define_constraints(n, lhs, "=", 0, 'chplink', 'fix_p_nom_ratio')
#top_iso_fuel_line for extendable
lhs = linexpr((1,link_p[heat_ext]),
(1,link_p[electric_ext].values),
(-1,link_p_nom[electric_ext].values))
define_constraints(n, lhs, "<=", 0, 'chplink', 'top_iso_fuel_line_ext')
if not electric_fix.empty:
#top_iso_fuel_line for fixed
lhs = linexpr((1,link_p[heat_fix]),
(1,link_p[electric_fix].values))
rhs = n.links.loc[electric_fix, "p_nom"].values
define_constraints(n, lhs, "<=", rhs, 'chplink', 'top_iso_fuel_line_fix')
if not electric.empty:
#backpressure
lhs = linexpr((n.links.loc[electric, "c_b"].values
*n.links.loc[heat, "efficiency"],
link_p[heat]),
(-n.links.loc[electric, "efficiency"].values,
link_p[electric].values))
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
def add_co2_sequestration_limit(n, sns):
co2_stores = n.stores.loc[n.stores.carrier=='co2 stored'].index
if co2_stores.empty or ('Store', 'e') not in n.variables.index:
return
vars_final_co2_stored = get_var(n, 'Store', 'e').loc[sns[-1], co2_stores]
lhs = linexpr((1, vars_final_co2_stored)).sum()
rhs = n.config["sector"].get("co2_sequestration_potential", 200) * 1e6
name = 'co2_sequestration_limit'
define_constraints(n, lhs, "<=", rhs, 'GlobalConstraint',
'mu', axes=pd.Index([name]), spec=name)
def extra_functionality(n, snapshots):
add_battery_constraints(n)
add_co2_sequestration_limit(n, snapshots)
def solve_network(n, config, opts='', **kwargs):
solver_options = config['solving']['solver'].copy()
solver_name = solver_options.pop('name')
cf_solving = config['solving']['options']
track_iterations = cf_solving.get('track_iterations', False)
min_iterations = cf_solving.get('min_iterations', 4)
max_iterations = cf_solving.get('max_iterations', 6)
# add to network for extra_functionality
n.config = config
n.opts = opts
if cf_solving.get('skip_iterations', False):
network_lopf(n, solver_name=solver_name, solver_options=solver_options,
extra_functionality=extra_functionality, **kwargs)
else:
ilopf(n, solver_name=solver_name, solver_options=solver_options,
track_iterations=track_iterations,
min_iterations=min_iterations,
max_iterations=max_iterations,
extra_functionality=extra_functionality, **kwargs)
return n
if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'solve_network',
simpl='',
clusters=48,
lv=1.0,
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
planning_horizons=2050,
)
logging.basicConfig(filename=snakemake.log.python,
level=snakemake.config['logging_level'])
tmpdir = snakemake.config['solving'].get('tmpdir')
if tmpdir is not None:
Path(tmpdir).mkdir(parents=True, exist_ok=True)
opts = snakemake.wildcards.opts.split('-')
solve_opts = snakemake.config['solving']['options']
fn = getattr(snakemake.log, 'memory', None)
with memory_logger(filename=fn, interval=30.) as mem:
overrides = override_component_attrs(snakemake.input.overrides)
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
n = prepare_network(n, solve_opts)
n = solve_network(n, config=snakemake.config, opts=opts,
solver_dir=tmpdir,
solver_logfile=snakemake.log.solver)
if "lv_limit" in n.global_constraints.index:
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]
n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"]
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))