719 lines
24 KiB
Python
719 lines
24 KiB
Python
from functools import partial
|
|
from tqdm import tqdm
|
|
|
|
import multiprocessing as mp
|
|
import pandas as pd
|
|
import geopandas as gpd
|
|
import numpy as np
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
def cartesian(s1, s2):
|
|
"""Cartesian product of two pd.Series"""
|
|
return pd.DataFrame(np.outer(s1, s2), index=s1.index, columns=s2.index)
|
|
|
|
|
|
def reverse(dictionary):
|
|
"""reverses a keys and values of a dictionary"""
|
|
return {v: k for k, v in dictionary.items()}
|
|
|
|
non_EU = ["NO", "CH", "ME", "MK", "RS", "BA", "AL"]
|
|
|
|
idees_rename = {"GR": "EL", "GB": "UK"}
|
|
|
|
eu28 = [
|
|
"FR",
|
|
"DE",
|
|
"GB",
|
|
"IT",
|
|
"ES",
|
|
"PL",
|
|
"SE",
|
|
"NL",
|
|
"BE",
|
|
"FI",
|
|
"CZ",
|
|
"DK",
|
|
"PT",
|
|
"RO",
|
|
"AT",
|
|
"BG",
|
|
"EE",
|
|
"GR",
|
|
"LV",
|
|
"HU",
|
|
"IE",
|
|
"SK",
|
|
"LT",
|
|
"HR",
|
|
"LU",
|
|
"SI",
|
|
] + ["CY", "MT"]
|
|
|
|
eu28_eea = eu28.copy()
|
|
eu28_eea.remove("GB")
|
|
eu28_eea.append("UK")
|
|
|
|
|
|
to_ipcc = {
|
|
"electricity": "1.A.1.a - Public Electricity and Heat Production",
|
|
"residential non-elec": "1.A.4.b - Residential",
|
|
"services non-elec": "1.A.4.a - Commercial/Institutional",
|
|
"rail non-elec": "1.A.3.c - Railways",
|
|
"road non-elec": "1.A.3.b - Road Transportation",
|
|
"domestic navigation": "1.A.3.d - Domestic Navigation",
|
|
"international navigation": "1.D.1.b - International Navigation",
|
|
"domestic aviation": "1.A.3.a - Domestic Aviation",
|
|
"international aviation": "1.D.1.a - International Aviation",
|
|
"total energy": "1 - Energy",
|
|
"industrial processes": "2 - Industrial Processes and Product Use",
|
|
"agriculture": "3 - Agriculture",
|
|
"agriculture, forestry and fishing": '1.A.4.c - Agriculture/Forestry/Fishing',
|
|
"LULUCF": "4 - Land Use, Land-Use Change and Forestry",
|
|
"waste management": "5 - Waste management",
|
|
"other": "6 - Other Sector",
|
|
"indirect": "ind_CO2 - Indirect CO2",
|
|
"total wL": "Total (with LULUCF)",
|
|
"total woL": "Total (without LULUCF)",
|
|
}
|
|
|
|
|
|
def eurostat_per_country(country):
|
|
|
|
country_fn = idees_rename.get(country, country)
|
|
fn = snakemake.input.eurostat + f"/{country_fn}-Energy-balance-sheets-June-2021-edition.xlsb"
|
|
|
|
df = pd.read_excel(
|
|
fn,
|
|
sheet_name=None,
|
|
skiprows=4,
|
|
index_col=list(range(3)),
|
|
na_values=["+", "-", "=", "Z", ":"],
|
|
)
|
|
|
|
df.pop("Cover")
|
|
|
|
return pd.concat(df)
|
|
|
|
|
|
def build_eurostat(countries, year=None):
|
|
"""Return multi-index for all countries' energy data in TWh/a."""
|
|
|
|
nprocesses = snakemake.threads
|
|
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
|
|
desc='Build from eurostat database')
|
|
with mp.Pool(processes=nprocesses) as pool:
|
|
dfs = list(tqdm(pool.imap(eurostat_per_country, countries), **tqdm_kwargs))
|
|
|
|
index_names = ['country', 'year', 'lvl1', 'lvl2', 'lvl3']
|
|
df = pd.concat(dfs, keys=countries, names=index_names)
|
|
|
|
df.dropna(how='all', axis=0, inplace=True)
|
|
df.dropna(how='all', axis=1, inplace=True)
|
|
df = df[df.index.get_level_values('lvl1') != 'ktoe']
|
|
|
|
i = df.index.to_frame(index=False)
|
|
i.loc[i.lvl2 == 'Primary production', ['lvl1', 'lvl3']] = 'Main'
|
|
i.loc[i.lvl2 == 'Gross electricity production', 'lvl1'] = "Gross production"
|
|
i.ffill(inplace=True)
|
|
df.index = pd.MultiIndex.from_frame(i)
|
|
|
|
df.drop(list(range(1990, 2020)), axis=1, inplace=True)
|
|
df.drop("Unnamed: 7", axis=1, inplace=True)
|
|
df.fillna(0., inplace=True)
|
|
|
|
# convert ktoe/a to TWh/a
|
|
df *= 11.63 / 1e3
|
|
|
|
df.index = df.index.set_levels(df.index.levels[1].astype(int), level=1)
|
|
|
|
if year:
|
|
df = df.xs(year, level='year')
|
|
|
|
return df
|
|
|
|
|
|
def build_swiss(year=None):
|
|
"""Return a pd.DataFrame of Swiss energy data in TWh/a"""
|
|
|
|
fn = snakemake.input.swiss
|
|
|
|
df = pd.read_csv(fn, index_col=[0,1]).stack().unstack('item')
|
|
df.index.names = ["country", "year"]
|
|
df.index = df.index.set_levels(df.index.levels[1].astype(int), level=1)
|
|
|
|
if year:
|
|
df = df.xs(year, level='year')
|
|
|
|
# convert PJ/a to TWh/a
|
|
df /= 3.6
|
|
|
|
return df
|
|
|
|
|
|
def idees_per_country(country):
|
|
|
|
base_dir = snakemake.input.idees
|
|
|
|
ct_totals = {}
|
|
|
|
ct_idees = idees_rename.get(country, country)
|
|
fn_residential = f"{base_dir}/JRC-IDEES-2015_Residential_{ct_idees}.xlsx"
|
|
fn_tertiary = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
|
|
fn_transport = f"{base_dir}/JRC-IDEES-2015_Transport_{ct_idees}.xlsx"
|
|
|
|
# residential
|
|
|
|
df = pd.read_excel(fn_residential, "RES_hh_fec", index_col=0)
|
|
|
|
ct_totals["total residential space"] = df.loc["Space heating"]
|
|
|
|
rows = ["Advanced electric heating", "Conventional electric heating"]
|
|
ct_totals["electricity residential space"] = df.loc[rows].sum()
|
|
|
|
ct_totals["total residential water"] = df.loc["Water heating"]
|
|
|
|
assert df.index[23] == "Electricity"
|
|
ct_totals["electricity residential water"] = df.iloc[23]
|
|
|
|
ct_totals["total residential cooking"] = df.loc["Cooking"]
|
|
|
|
assert df.index[30] == "Electricity"
|
|
ct_totals["electricity residential cooking"] = df.iloc[30]
|
|
|
|
df = pd.read_excel(fn_residential, "RES_summary", index_col=0)
|
|
|
|
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
|
|
ct_totals["total residential"] = df.loc[row]
|
|
|
|
assert df.index[47] == "Electricity"
|
|
ct_totals["electricity residential"] = df.iloc[47]
|
|
|
|
assert df.index[46] == "Derived heat"
|
|
ct_totals["derived heat residential"] = df.iloc[46]
|
|
|
|
assert df.index[50] == 'Thermal uses'
|
|
ct_totals["thermal uses residential"] = df.iloc[50]
|
|
|
|
# services
|
|
|
|
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)
|
|
|
|
ct_totals["total services space"] = df.loc["Space heating"]
|
|
|
|
rows = ["Advanced electric heating", "Conventional electric heating"]
|
|
ct_totals["electricity services space"] = df.loc[rows].sum()
|
|
|
|
ct_totals["total services water"] = df.loc["Hot water"]
|
|
|
|
assert df.index[24] == "Electricity"
|
|
ct_totals["electricity services water"] = df.iloc[24]
|
|
|
|
ct_totals["total services cooking"] = df.loc["Catering"]
|
|
|
|
assert df.index[31] == "Electricity"
|
|
ct_totals["electricity services cooking"] = df.iloc[31]
|
|
|
|
df = pd.read_excel(fn_tertiary, "SER_summary", index_col=0)
|
|
|
|
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
|
|
ct_totals["total services"] = df.loc[row]
|
|
|
|
assert df.index[50] == "Electricity"
|
|
ct_totals["electricity services"] = df.iloc[50]
|
|
|
|
assert df.index[49] == "Derived heat"
|
|
ct_totals["derived heat services"] = df.iloc[49]
|
|
|
|
assert df.index[53] == 'Thermal uses'
|
|
ct_totals["thermal uses services"] = df.iloc[53]
|
|
|
|
# agriculture, forestry and fishing
|
|
|
|
start = "Detailed split of energy consumption (ktoe)"
|
|
end = "Market shares of energy uses (%)"
|
|
|
|
df = pd.read_excel(fn_tertiary, "AGR_fec", index_col=0).loc[start:end]
|
|
|
|
rows = [
|
|
"Lighting",
|
|
"Ventilation",
|
|
"Specific electricity uses",
|
|
"Pumping devices (electric)"
|
|
]
|
|
ct_totals["total agriculture electricity"] = df.loc[rows].sum()
|
|
|
|
rows = ["Specific heat uses", "Low enthalpy heat"]
|
|
ct_totals["total agriculture heat"] = df.loc[rows].sum()
|
|
|
|
rows = [
|
|
"Motor drives",
|
|
"Farming machine drives (diesel oil incl. biofuels)",
|
|
"Pumping devices (diesel oil incl. biofuels)",
|
|
]
|
|
ct_totals["total agriculture machinery"] = df.loc[rows].sum()
|
|
|
|
row = "Agriculture, forestry and fishing"
|
|
ct_totals["total agriculture"] = df.loc[row]
|
|
|
|
# transport
|
|
|
|
df = pd.read_excel(fn_transport, "TrRoad_ene", index_col=0)
|
|
|
|
ct_totals["total road"] = df.loc["by fuel (EUROSTAT DATA)"]
|
|
|
|
ct_totals["electricity road"] = df.loc["Electricity"]
|
|
|
|
ct_totals["total two-wheel"] = df.loc["Powered 2-wheelers (Gasoline)"]
|
|
|
|
assert df.index[19] == "Passenger cars"
|
|
ct_totals["total passenger cars"] = df.iloc[19]
|
|
|
|
assert df.index[30] == "Battery electric vehicles"
|
|
ct_totals["electricity passenger cars"] = df.iloc[30]
|
|
|
|
assert df.index[31] == "Motor coaches, buses and trolley buses"
|
|
ct_totals["total other road passenger"] = df.iloc[31]
|
|
|
|
assert df.index[39] == "Battery electric vehicles"
|
|
ct_totals["electricity other road passenger"] = df.iloc[39]
|
|
|
|
assert df.index[41] == "Light duty vehicles"
|
|
ct_totals["total light duty road freight"] = df.iloc[41]
|
|
|
|
assert df.index[49] == "Battery electric vehicles"
|
|
ct_totals["electricity light duty road freight"] = df.iloc[49]
|
|
|
|
row = "Heavy duty vehicles (Diesel oil incl. biofuels)"
|
|
ct_totals["total heavy duty road freight"] = df.loc[row]
|
|
|
|
assert df.index[61] == "Passenger cars"
|
|
ct_totals["passenger car efficiency"] = df.iloc[61]
|
|
|
|
df = pd.read_excel(fn_transport, "TrRail_ene", index_col=0)
|
|
|
|
ct_totals["total rail"] = df.loc["by fuel (EUROSTAT DATA)"]
|
|
|
|
ct_totals["electricity rail"] = df.loc["Electricity"]
|
|
|
|
assert df.index[15] == "Passenger transport"
|
|
ct_totals["total rail passenger"] = df.iloc[15]
|
|
|
|
assert df.index[16] == "Metro and tram, urban light rail"
|
|
assert df.index[19] == "Electric"
|
|
assert df.index[20] == "High speed passenger trains"
|
|
ct_totals["electricity rail passenger"] = df.iloc[[16, 19, 20]].sum()
|
|
|
|
assert df.index[21] == "Freight transport"
|
|
ct_totals["total rail freight"] = df.iloc[21]
|
|
|
|
assert df.index[23] == "Electric"
|
|
ct_totals["electricity rail freight"] = df.iloc[23]
|
|
|
|
df = pd.read_excel(fn_transport, "TrAvia_ene", index_col=0)
|
|
|
|
assert df.index[6] == "Passenger transport"
|
|
ct_totals["total aviation passenger"] = df.iloc[6]
|
|
|
|
assert df.index[10] == "Freight transport"
|
|
ct_totals["total aviation freight"] = df.iloc[10]
|
|
|
|
assert df.index[7] == "Domestic"
|
|
ct_totals["total domestic aviation passenger"] = df.iloc[7]
|
|
|
|
assert df.index[8] == "International - Intra-EU"
|
|
assert df.index[9] == "International - Extra-EU"
|
|
ct_totals["total international aviation passenger"] = df.iloc[[8,9]].sum()
|
|
|
|
assert df.index[11] == "Domestic and International - Intra-EU"
|
|
ct_totals["total domestic aviation freight"] = df.iloc[11]
|
|
|
|
assert df.index[12] == "International - Extra-EU"
|
|
ct_totals["total international aviation freight"] = df.iloc[12]
|
|
|
|
ct_totals["total domestic aviation"] = ct_totals["total domestic aviation freight"] \
|
|
+ ct_totals["total domestic aviation passenger"]
|
|
|
|
ct_totals["total international aviation"] = ct_totals["total international aviation freight"] \
|
|
+ ct_totals["total international aviation passenger"]
|
|
|
|
df = pd.read_excel(fn_transport, "TrNavi_ene", index_col=0)
|
|
|
|
# coastal and inland
|
|
ct_totals["total domestic navigation"] = df.loc["by fuel (EUROSTAT DATA)"]
|
|
|
|
df = pd.read_excel(fn_transport, "TrRoad_act", index_col=0)
|
|
|
|
assert df.index[85] == "Passenger cars"
|
|
ct_totals["passenger cars"] = df.iloc[85]
|
|
|
|
return pd.DataFrame(ct_totals)
|
|
|
|
|
|
def build_idees(countries, year=None):
|
|
|
|
nprocesses = snakemake.threads
|
|
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
|
|
desc='Build from IDEES database')
|
|
with mp.Pool(processes=nprocesses) as pool:
|
|
dfs = list(tqdm(pool.imap(idees_per_country, countries), **tqdm_kwargs))
|
|
|
|
df = pd.concat(dfs, keys=countries, names=['country', 'year'])
|
|
|
|
# convert ktoe to TWh
|
|
exclude = df.columns.str.fullmatch("passenger cars")
|
|
df.loc[:,~exclude] *= 11.63 / 1e3
|
|
|
|
# convert TWh/100km to kWh/km
|
|
df["passenger car efficiency"] *= 10
|
|
|
|
# district heating share
|
|
subset = ["derived heat residential", "derived heat services"]
|
|
district_heat = df[subset].sum(axis=1)
|
|
subset = ["thermal uses residential", "thermal uses services"]
|
|
total_heat = df[subset].sum(axis=1)
|
|
df["district heat share"] = district_heat.div(total_heat)
|
|
|
|
if year:
|
|
df = df.xs(int(year), level='year')
|
|
|
|
df.columns.name = 'item'
|
|
|
|
return df
|
|
|
|
|
|
def build_energy_totals(countries, eurostat, swiss, idees):
|
|
|
|
eurostat_fuels = dict(
|
|
electricity="Electricity",
|
|
total="Total"
|
|
)
|
|
|
|
eurostat_sectors = dict(
|
|
residential="Households",
|
|
services="Commercial & public services",
|
|
road="Road",
|
|
rail="Rail"
|
|
)
|
|
|
|
to_drop = ["passenger cars", "passenger car efficiency"]
|
|
|
|
new_index = pd.MultiIndex.from_product(
|
|
[countries, eurostat.index.levels[1]],
|
|
names=["country", "year"]
|
|
)
|
|
|
|
df = idees.reindex(new_index).drop(to_drop, axis=1)
|
|
|
|
eurostat_countries = eurostat.index.levels[0]
|
|
in_eurostat = df.index.levels[0].intersection(eurostat_countries)
|
|
|
|
# add international navigation
|
|
|
|
slicer = idx[in_eurostat, :, :, "International maritime bunkers", :]
|
|
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
|
|
df.loc[in_eurostat, "total international navigation"] = fill_values
|
|
|
|
# add swiss energy data
|
|
|
|
df.loc["CH"] = swiss
|
|
|
|
# get values for missing countries based on Eurostat EnergyBalances
|
|
# divide cooking/space/water according to averages in EU28
|
|
|
|
to_fill = df.index[df["total residential"].isna() & df.index.get_level_values('country').isin(eurostat_countries)]
|
|
uses = ["space", "cooking", "water"]
|
|
|
|
c = to_fill.get_level_values('country')
|
|
y = to_fill.get_level_values('year')
|
|
|
|
for sector in ["residential", "services", "road", "rail"]:
|
|
|
|
# fuel use
|
|
|
|
for fuel in ["electricity", "total"]:
|
|
|
|
slicer = idx[c, y, :, :, eurostat_sectors[sector]]
|
|
fill_values = eurostat.loc[slicer, eurostat_fuels[fuel]].groupby(level=[0,1]).sum()
|
|
df.loc[to_fill, f"{fuel} {sector}"] = fill_values
|
|
|
|
for sector in ["residential", "services"]:
|
|
|
|
# electric use
|
|
|
|
for use in uses:
|
|
fuel_use = df[f"electricity {sector} {use}"]
|
|
fuel = df[f"electricity {sector}"]
|
|
avg = fuel_use.div(fuel).mean()
|
|
print(f"{sector}: average fraction of electricity for {use} is {avg:.3f}")
|
|
df.loc[to_fill, f"electricity {sector} {use}"] = avg * df.loc[to_fill, f"electricity {sector}"]
|
|
|
|
# non-electric use
|
|
|
|
for use in uses:
|
|
nonelectric_use = df[f"total {sector} {use}"] - df[f"electricity {sector} {use}"]
|
|
nonelectric = df[f"total {sector}"] - df[f"electricity {sector}"]
|
|
avg = nonelectric_use.div(nonelectric).mean()
|
|
print(f"{sector}: average fraction of non-electric for {use} is {avg:.3f}")
|
|
electric_use = df.loc[to_fill, f"electricity {sector} {use}"]
|
|
nonelectric = df.loc[to_fill, f"total {sector}"] - df.loc[to_fill, f"electricity {sector}"]
|
|
df.loc[to_fill, f"total {sector} {use}"] = electric_use + avg * nonelectric
|
|
|
|
# Fix Norway space and water heating fractions
|
|
# http://www.ssb.no/en/energi-og-industri/statistikker/husenergi/hvert-3-aar/2014-07-14
|
|
# The main heating source for about 73 per cent of the households is based on electricity
|
|
# => 26% is non-electric
|
|
elec_fraction = 0.73
|
|
|
|
no_norway = df.drop("NO")
|
|
|
|
for sector in ["residential", "services"]:
|
|
|
|
# assume non-electric is heating
|
|
nonelectric = df.loc["NO", f"total {sector}"] - df.loc["NO", f"electricity {sector}"]
|
|
total_heating = nonelectric / (1 - elec_fraction)
|
|
|
|
for use in uses:
|
|
nonelectric_use = no_norway[f"total {sector} {use}"] - no_norway[f"electricity {sector} {use}"]
|
|
nonelectric = no_norway[f"total {sector}"] - no_norway[f"electricity {sector}"]
|
|
fraction = nonelectric_use.div(nonelectric).mean()
|
|
df.loc["NO", f"total {sector} {use}"] = (total_heating * fraction).values
|
|
df.loc["NO", f"electricity {sector} {use}"] = (total_heating * fraction * elec_fraction).values
|
|
|
|
# Missing aviation
|
|
|
|
slicer = idx[c, y, :, :, "Domestic aviation"]
|
|
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
|
|
df.loc[to_fill, "total domestic aviation"] = fill_values
|
|
|
|
slicer = idx[c, y, :, "International aviation", :]
|
|
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
|
|
df.loc[to_fill, "total international aviation"] = fill_values
|
|
|
|
# missing domestic navigation
|
|
|
|
slicer = idx[c, y, :, :, "Domestic navigation"]
|
|
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
|
|
df.loc[to_fill, "total domestic navigation"] = fill_values
|
|
|
|
# split road traffic for non-IDEES
|
|
missing = df.index[df["total passenger cars"].isna()]
|
|
for fuel in ["electricity", "total"]:
|
|
selection = [
|
|
f"{fuel} passenger cars",
|
|
f"{fuel} other road passenger",
|
|
f"{fuel} light duty road freight",
|
|
]
|
|
if fuel == "total":
|
|
selection.extend([
|
|
f"{fuel} two-wheel",
|
|
f"{fuel} heavy duty road freight"
|
|
])
|
|
road = df[selection].sum()
|
|
road_fraction = road / road.sum()
|
|
fill_values = cartesian(df.loc[missing, f"{fuel} road"], road_fraction)
|
|
df.loc[missing, road_fraction.index] = fill_values
|
|
|
|
# split rail traffic for non-IDEES
|
|
missing = df.index[df["total rail passenger"].isna()]
|
|
for fuel in ["total", "electricity"]:
|
|
selection = [f"{fuel} rail passenger", f"{fuel} rail freight"]
|
|
rail = df[selection].sum()
|
|
rail_fraction = rail / rail.sum()
|
|
fill_values = cartesian(df.loc[missing, f"{fuel} rail"], rail_fraction)
|
|
df.loc[missing, rail_fraction.index] = fill_values
|
|
|
|
# split aviation traffic for non-IDEES
|
|
missing = df.index[df["total domestic aviation passenger"].isna()]
|
|
for destination in ["domestic", "international"]:
|
|
selection = [
|
|
f"total {destination} aviation passenger",
|
|
f"total {destination} aviation freight",
|
|
]
|
|
aviation = df[selection].sum()
|
|
aviation_fraction = aviation / aviation.sum()
|
|
fill_values = cartesian(df.loc[missing, f"total {destination} aviation"], aviation_fraction)
|
|
df.loc[missing, aviation_fraction.index] = fill_values
|
|
|
|
for purpose in ["passenger", "freight"]:
|
|
attrs = [f"total domestic aviation {purpose}", f"total international aviation {purpose}"]
|
|
df.loc[missing, f"total aviation {purpose}"] = df.loc[missing, attrs].sum(axis=1)
|
|
|
|
if "BA" in df.index:
|
|
# fill missing data for BA proportional to RS
|
|
ratio = (df.loc["BA"].loc[2014:2020] / df.loc["RS"].loc[2014:2020]).mean()
|
|
df.loc["BA"] = (ratio * df.loc["RS"]).values
|
|
|
|
# Missing district heating share
|
|
dh_share = pd.read_csv(snakemake.input.district_heat_share,
|
|
index_col=0, usecols=[0, 1])
|
|
|
|
dh_share = pd.concat({y: dh_share for y in range(1990, 2021)}, names=["year", "country"]).swaplevel()
|
|
dh_share = dh_share.div(100).reindex(df.index)
|
|
|
|
# make conservative assumption and take minimum from both data sets
|
|
item = "district heat share"
|
|
df[item] = pd.concat([dh_share, df[item]], axis=1).min(axis=1)
|
|
|
|
return df
|
|
|
|
|
|
def build_eea_co2(year=1990):
|
|
|
|
# https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
|
# downloaded 201228 (modified by EEA last on 201221)
|
|
df = pd.read_csv(snakemake.input.co2, encoding="latin-1")
|
|
|
|
df.replace(dict(Year="1985-1987"), 1986, inplace=True)
|
|
df.Year = df.Year.astype(int)
|
|
index_col = ["Country_code", "Pollutant_name", "Year", "Sector_name"]
|
|
df = df.set_index(index_col).sort_index()
|
|
|
|
emissions_scope = snakemake.config["energy"]["emissions"]
|
|
|
|
cts = ["CH", "EUA", "NO"] + eu28_eea
|
|
|
|
slicer = idx[cts, emissions_scope, year, to_ipcc.values()]
|
|
emissions = (
|
|
df.loc[slicer, "emissions"]
|
|
.unstack("Sector_name")
|
|
.rename(columns=reverse(to_ipcc))
|
|
.droplevel([1,2])
|
|
)
|
|
|
|
emissions.rename(index={"EUA": "EU28", "UK": "GB"}, inplace=True)
|
|
|
|
to_subtract = [
|
|
"electricity",
|
|
"services non-elec",
|
|
"residential non-elec",
|
|
"road non-elec",
|
|
"rail non-elec",
|
|
"domestic aviation",
|
|
"international aviation",
|
|
"domestic navigation",
|
|
"international navigation",
|
|
"agriculture, forestry and fishing"
|
|
]
|
|
emissions["industrial non-elec"] = emissions["total energy"] - emissions[to_subtract].sum(axis=1)
|
|
|
|
emissions["agriculture"] += emissions["agriculture, forestry and fishing"]
|
|
|
|
to_drop = ["total energy", "total wL", "total woL", "agriculture, forestry and fishing"]
|
|
emissions.drop(columns=to_drop, inplace=True)
|
|
|
|
# convert from Gg to Mt
|
|
return emissions / 1e3
|
|
|
|
|
|
def build_eurostat_co2(countries, year=1990):
|
|
|
|
eurostat = build_eurostat(countries, year)
|
|
|
|
specific_emissions = pd.Series(index=eurostat.columns, dtype=float)
|
|
|
|
# emissions in tCO2_equiv per MWh_th
|
|
specific_emissions["Solid fuels"] = 0.36 # Approximates coal
|
|
specific_emissions["Oil (total)"] = 0.285 # Average of distillate and residue
|
|
specific_emissions["Gas"] = 0.2 # For natural gas
|
|
|
|
# oil values from https://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11
|
|
# Distillate oil (No. 2) 0.276
|
|
# Residual oil (No. 6) 0.298
|
|
# https://www.eia.gov/electricity/annual/html/epa_a_03.html
|
|
|
|
return eurostat.multiply(specific_emissions).sum(axis=1)
|
|
|
|
|
|
def build_co2_totals(countries, eea_co2, eurostat_co2):
|
|
|
|
co2 = eea_co2.reindex(countries)
|
|
|
|
for ct in countries.intersection(["BA", "RS", "AL", "ME", "MK"]):
|
|
|
|
mappings = {
|
|
"electricity": (ct, "+", "Conventional Thermal Power Stations", "of which From Coal"),
|
|
"residential non-elec": (ct, "+", "+", "Residential"),
|
|
"services non-elec": (ct, "+", "+", "Services"),
|
|
"road non-elec": (ct, "+", "+", "Road"),
|
|
"rail non-elec": (ct, "+", "+", "Rail"),
|
|
"domestic navigation": (ct, "+", "+", "Domestic Navigation"),
|
|
"international navigation": (ct, "-", "Bunkers"),
|
|
"domestic aviation": (ct, "+", "+", "Domestic aviation"),
|
|
"international aviation": (ct, "+", "+", "International aviation"),
|
|
# does not include industrial process emissions or fuel processing/refining
|
|
"industrial non-elec": (ct, "+", "Industry"),
|
|
# does not include non-energy emissions
|
|
"agriculture": (eurostat_co2.index.get_level_values(0) == ct) & eurostat_co2.index.isin(["Agriculture / Forestry", "Fishing"], level=3),
|
|
}
|
|
|
|
for i, mi in mappings.items():
|
|
co2.at[ct, i] = eurostat_co2.loc[mi].sum()
|
|
|
|
return co2
|
|
|
|
|
|
def build_transport_data(countries, population, idees):
|
|
|
|
transport_data = pd.DataFrame(index=countries)
|
|
|
|
# collect number of cars
|
|
|
|
transport_data["number cars"] = idees["passenger cars"]
|
|
|
|
# CH from http://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU#Luxembourg_has_the_highest_number_of_passenger_cars_per_inhabitant
|
|
transport_data.at["CH", "number cars"] = 4.136e6
|
|
|
|
missing = transport_data.index[transport_data["number cars"].isna()]
|
|
print(f"Missing data on cars from:\n{list(missing)}\nFilling gaps with averaged data.")
|
|
|
|
cars_pp = transport_data["number cars"] / population
|
|
transport_data.loc[missing, "number cars"] = cars_pp.mean() * population
|
|
|
|
# collect average fuel efficiency in kWh/km
|
|
|
|
transport_data["average fuel efficiency"] = idees["passenger car efficiency"]
|
|
|
|
missing = transport_data.index[transport_data["average fuel efficiency"].isna()]
|
|
print(f"Missing data on fuel efficiency from:\n{list(missing)}\nFilling gapswith averaged data.")
|
|
|
|
fill_values = transport_data["average fuel efficiency"].mean()
|
|
transport_data.loc[missing, "average fuel efficiency"] = fill_values
|
|
|
|
return transport_data
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from helper import mock_snakemake
|
|
snakemake = mock_snakemake('build_energy_totals')
|
|
|
|
config = snakemake.config["energy"]
|
|
data_year = int(config["energy_totals_year"])
|
|
|
|
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("index")
|
|
population = nuts3["pop"].groupby(nuts3.country).sum()
|
|
|
|
countries = population.index
|
|
idees_countries = countries.intersection(eu28)
|
|
|
|
eurostat = build_eurostat(countries.difference(['CH']))
|
|
swiss = build_swiss()
|
|
idees = build_idees(idees_countries)
|
|
|
|
energy = build_energy_totals(countries, eurostat, swiss, idees)
|
|
energy.to_csv(snakemake.output.energy_name_full)
|
|
|
|
energy = energy.xs(data_year, level='year')
|
|
energy.to_csv(snakemake.output.energy_name)
|
|
|
|
base_year_emissions = config["base_emissions_year"]
|
|
eea_co2 = build_eea_co2(base_year_emissions)
|
|
eurostat_co2 = build_eurostat_co2(countries, base_year_emissions)
|
|
|
|
co2 = build_co2_totals(countries, eea_co2, eurostat_co2)
|
|
co2.to_csv(snakemake.output.co2_name)
|
|
|
|
transport = build_transport_data(countries, population, idees)
|
|
transport.to_csv(snakemake.output.transport_name)
|