pypsa-eur/scripts/build_country_flh.py
FabianHofmann eaf30a9b65
Introduce mocksnakemake which acutally parses Snakefile (#107)
* rewrite mocksnakemake for parsing real Snakefile

* continue add function to scripts

* going through all scripts, setting new mocksnakemake

* fix plotting scripts

* fix build_country_flh

* fix build_country_flh II

* adjust config files

* fix make_summary for tutorial network

* create dir also for output

* incorporate suggestions

* consistent import of mocksnakemake

* consistent import of mocksnakemake II

* Update scripts/_helpers.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/_helpers.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/_helpers.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/_helpers.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/plot_network.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/plot_network.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* Update scripts/retrieve_databundle.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* use pathlib for mocksnakemake

* rename mocksnakemake into mock_snakemake

* revert change in data

* Update scripts/_helpers.py

Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com>

* remove setting logfile in mock_snakemake, use Path in configure_logging

* fix fallback path and base_dir
fix return type of make_io_accessable

* reformulate mock_snakemake

* incorporate suggestion, fix typos

* mock_snakemake: apply absolute paths again, add assertion error
*.py: make hard coded io path accessable for mock_snakemake

* retrieve_natura_raster: use snakemake.output for fn_out

* include suggestion

* Apply suggestions from code review

Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de>

* linting, add return ad end of file

* Update scripts/plot_p_nom_max.py

Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de>

* Update scripts/plot_p_nom_max.py

fixes #112

Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de>

* plot_p_nom_max: small correction

* config.tutorial.yaml fix snapshots end

* use techs instead of technology

* revert try out from previous commit, complete replacing

* change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters

* change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters II
2019-12-09 21:29:15 +01:00

236 lines
9.1 KiB
Python

#!/usr/bin/env python
"""
Create ``.csv`` files and plots for comparing per country full load hours of renewable time series.
Relevant Settings
-----------------
.. code:: yaml
snapshots:
renewable:
{technology}:
cutout:
resource:
correction_factor:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`snapshots_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
.. image:: img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
.. image:: img/gebco_2019_grid_image.jpg
:scale: 50 %
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
- ``data/pietzker2014.xlsx``: `Supplementary material 2 <https://ars.els-cdn.com/content/image/1-s2.0-S0306261914008149-mmc2.xlsx>`_ from `Pietzcker et al. <https://doi.org/10.1016/j.apenergy.2014.08.011>`_; not part of the data bundle; download and place here yourself.
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
- ``resources/country_flh_area_{technology}.csv``:
- ``resources/country_flh_aggregated_{technology}.csv``:
- ``resources/country_flh_uncorrected_{technology}.csv``:
- ``resources/country_flh_{technology}.pdf``:
- ``resources/country_exclusion_{technology}``:
Description
-----------
"""
import logging
logger = logging.getLogger(__name__)
from _helpers import configure_logging
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import geokit as gk
from scipy.sparse import vstack
import pycountry as pyc
import matplotlib.pyplot as plt
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
from build_renewable_profiles import init_globals, calculate_potential
def build_area(flh, countries, areamatrix, breaks, fn):
area_unbinned = xr.DataArray(areamatrix.todense(), [countries, capacity_factor.coords['spatial']])
bins = xr.DataArray(pd.cut(flh.to_series(), bins=breaks), flh.coords, name="bins")
area = area_unbinned.groupby(bins).sum(dim="spatial").to_pandas()
area.loc[:,slice(*area.sum()[lambda s: s > 0].index[[0,-1]])].to_csv(fn)
area.columns = area.columns.map(lambda s: s.left)
return area
def plot_area_not_solar(area, countries):
# onshore wind/offshore wind
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True)
for c, ax in zip(countries, axes):
d = a[[c]] / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def plot_area_solar(area, p_area, countries):
# onshore wind/offshore wind
p = p_area.T
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True, squeeze=False)
for c, ax in zip(countries, axes.flat):
d = pd.concat([a[c], p[c]], keys=['PyPSA-Eur', 'Pietzker'], axis=1) / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
# ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def build_aggregate(flh, countries, areamatrix, breaks, p_area, fn):
agg_a = pd.Series(np.ravel((areamatrix / areamatrix.sum(axis=1)).dot(flh.values)),
countries, name="PyPSA-Eur")
if p_area is None:
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
agg = pd.DataFrame({'PyPSA-Eur': agg_a})
else:
# Determine indices of countries which are also in Pietzcker
inds = pd.Index(countries).get_indexer(p_area.index)
areamatrix = areamatrix[inds]
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
midpoints = (breaks[1:] + breaks[:-1])/2.
p = p_area.T
# Per-country FLH comparison
agg_p = pd.Series((p / p.sum()).multiply(midpoints, axis=0).sum(), name="Pietzker")
agg_p['Overall'] = float((p.sum(axis=1) / p.sum().sum()).multiply(midpoints, axis=0).sum())
agg = pd.DataFrame({'PyPSA-Eur': agg_a, 'Pietzcker': agg_p, 'Ratio': agg_p / agg_a})
agg.to_csv(fn)
if __name__ == '__main__':
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_country_flh', technology='solar')
configure_logging(snakemake)
pgb.streams.wrap_stderr()
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds = gk.Extent.from_xXyY((minx - dx/2., maxx + dx/2.,
miny - dy/2., maxy + dy/2.))
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
init_globals(bounds.xXyY, dx, dy, config, paths)
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
countries = pd.Index(regions["name"], name="country")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(countries))
if not os.path.isdir(snakemake.output.exclusion):
os.makedirs(snakemake.output.exclusion)
matrix = vstack([calculate_potential(i, save_map=os.path.join(snakemake.output.exclusion, countries[i]))
for i in progressbar(regions.index)])
areamatrix = matrix * spdiag(vlanduse._cutout_cell_areas(cutout).ravel())
areamatrix.data[areamatrix.data < 1.] = 0 # ignore weather cells where only less than 1 km^2 can be installed
areamatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
capacity_factor = func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x'))
flh_uncorr = capacity_factor * 8760
flh_corr = correction_factor * flh_uncorr
if snakemake.wildcards.technology == 'solar':
pietzcker = pd.read_excel(snakemake.input.pietzker, sheet_name="PV on all area", skiprows=2, header=[0,1]).iloc[1:177]
p_area1_50 = pietzcker['Usable Area at given FLh in 1-50km distance to settlement '].dropna(axis=1)
p_area1_50.columns = p_area1_50.columns.str.split(' ').str[0]
p_area50_100 = pietzcker['Usable Area at given FLh in 50-100km distance to settlement ']
p_area = p_area1_50 + p_area50_100
cols = p_area.columns
breaks = cols.str.split('-').str[0].append(pd.Index([cols[-1].split('-')[1]])).astype(int)
p_area.columns = breaks[:-1]
p_area = p_area.reindex(countries.map(lambda c: pyc.countries.get(alpha_2=c).name))
p_area.index = countries
p_area = p_area.dropna() # Pietzcker does not have data for CZ and MK
else:
breaks = np.r_[0:8000:50]
p_area = None
area = build_area(flh_corr, countries, areamatrix, breaks, snakemake.output.area)
if snakemake.wildcards.technology == 'solar':
plot_area_solar(area, p_area, p_area.index)
else:
plot_area_not_solar(area, countries)
build_aggregate(flh_uncorr, countries, areamatrix, breaks, p_area, snakemake.output.uncorrected)
build_aggregate(flh_corr, countries, areamatrix, breaks, p_area, snakemake.output.aggregated)