pypsa-eur/scripts/build_hydro_profile.py

96 lines
2.9 KiB
Python

#!/usr/bin/env python
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build hydroelectric inflow time-series for each country.
Relevant Settings
-----------------
.. code:: yaml
countries:
renewable:
hydro:
cutout:
clip_min_inflow:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`toplevel_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/EIA_hydro_generation_2000_2014.csv``: Hydroelectricity net generation per country and year (`EIA <https://www.eia.gov/beta/international/data/browser/#/?pa=000000000000000000000000000000g&c=1028i008006gg6168g80a4k000e0ag00gg0004g800ho00g8&ct=0&ug=8&tl_id=2-A&vs=INTL.33-12-ALB-BKWH.A&cy=2014&vo=0&v=H&start=2000&end=2016>`_)
.. image:: ../img/hydrogeneration.png
:scale: 33 %
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``"cutouts/" + config["renewable"]['hydro']['cutout']``: confer :ref:`cutout`
Outputs
-------
- ``resources/profile_hydro.nc``:
=================== ================ =========================================================
Field Dimensions Description
=================== ================ =========================================================
inflow countries, time Inflow to the state of charge (in MW),
e.g. due to river inflow in hydro reservoir.
=================== ================ =========================================================
.. image:: ../img/inflow-ts.png
:scale: 33 %
.. image:: ../img/inflow-box.png
:scale: 33 %
Description
-----------
.. seealso::
:mod:`build_renewable_profiles`
"""
import logging
from _helpers import configure_logging
import atlite
import geopandas as gpd
from vresutils import hydro as vhydro
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_hydro_profile')
configure_logging(snakemake)
config_hydro = snakemake.config['renewable']['hydro']
cutout = atlite.Cutout(snakemake.input.cutout)
countries = snakemake.config['countries']
country_shapes = (gpd.read_file(snakemake.input.country_shapes)
.set_index('name')['geometry'].reindex(countries))
country_shapes.index.name = 'countries'
eia_stats = vhydro.get_eia_annual_hydro_generation(
snakemake.input.eia_hydro_generation).reindex(columns=countries)
inflow = cutout.runoff(shapes=country_shapes,
smooth=True,
lower_threshold_quantile=True,
normalize_using_yearly=eia_stats)
if 'clip_min_inflow' in config_hydro:
inflow = inflow.where(inflow > config_hydro['clip_min_inflow'], 0)
inflow.to_netcdf(snakemake.output[0])