f45b9a37ae
This allows us to control the substitution of natural gas for hydrogen in NH3 production. Remaining basic chemicals are olefins, BTX and chlorine. For 2015 NH3 production, we use the USGS data source.
334 lines
11 KiB
YAML
334 lines
11 KiB
YAML
version: 0.2.0
|
|
|
|
logging_level: INFO
|
|
|
|
results_dir: 'results/'
|
|
summary_dir: results
|
|
costs_dir: '../technology-data/outputs/'
|
|
run: 'your-run-name' # use this to keep track of runs with different settings
|
|
foresight: 'overnight' #options are overnight, myopic, perfect (perfect is not yet implemented)
|
|
|
|
|
|
scenario:
|
|
sectors: [E] # ignore this legacy setting
|
|
simpl: [''] # only relevant for PyPSA-Eur
|
|
lv: [1.0,1.5] # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
|
|
clusters: [45,50] # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
|
opts: [''] # only relevant for PyPSA-Eur
|
|
sector_opts: [Co2L0-3H-T-H-B-I-solar3-dist1] # this is where the main scenario settings are
|
|
# to really understand the options here, look in scripts/prepare_sector_network.py
|
|
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
|
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
|
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
|
# single letters are sectors: T for land transport, H for building heating,
|
|
# B for biomass supply, I for industry, shipping and aviation
|
|
# solarx or onwindx changes the available installable potential by factor x
|
|
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
|
planning_horizons : [2030] #investment years for myopic and perfect; or costs year for overnight
|
|
co2_budget_name: ['go'] #gives shape of CO2 budgets over planning horizon
|
|
|
|
# snapshots are originally set in PyPSA-Eur/config.yaml but used again by PyPSA-Eur-Sec
|
|
snapshots:
|
|
# arguments to pd.date_range
|
|
start: "2013-01-01"
|
|
end: "2014-01-01"
|
|
closed: 'left' # end is not inclusive
|
|
|
|
atlite:
|
|
cutout_dir: '../pypsa-eur/cutouts'
|
|
cutout_name: "europe-2013-era5"
|
|
|
|
# this information is NOT used but needed as an argument for
|
|
# pypsa-eur/scripts/add_electricity.py/load_costs in make_summary.py
|
|
electricity:
|
|
max_hours:
|
|
battery: 6
|
|
H2: 168
|
|
|
|
biomass:
|
|
year: 2030
|
|
scenario: "Med"
|
|
|
|
# only relevant for foresight = myopic or perfect
|
|
existing_capacities:
|
|
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]
|
|
threshold_capacity: 10
|
|
conventional_carriers: ['lignite', 'coal', 'oil', 'uranium']
|
|
|
|
sector:
|
|
'central' : True
|
|
'central_fraction' : 0.6
|
|
'dsm_restriction_value' : 0.75 #Set to 0 for no restriction on BEV DSM
|
|
'dsm_restriction_time' : 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
|
'transport_heating_deadband_upper' : 20.
|
|
'transport_heating_deadband_lower' : 15.
|
|
'ICE_lower_degree_factor' : 0.375 #in per cent increase in fuel consumption per degree above deadband
|
|
'ICE_upper_degree_factor' : 1.6
|
|
'EV_lower_degree_factor' : 0.98
|
|
'EV_upper_degree_factor' : 0.63
|
|
'district_heating_loss' : 0.15
|
|
'bev' : True #turns on EV battery
|
|
'bev_availability' : 0.5 #How many cars do smart charging
|
|
'v2g' : True #allows feed-in to grid from EV battery
|
|
'transport_fuel_cell_share' : 0. #0 means all EVs, 1 means all FCs
|
|
'shipping_average_efficiency' : 0.4 #For conversion of fuel oil to propulsion in 2011
|
|
'time_dep_hp_cop' : True
|
|
'space_heating_fraction' : 1.0 #fraction of space heating active
|
|
'retrofitting' : False
|
|
'retroI-fraction' : 0.25
|
|
'retroII-fraction' : 0.55
|
|
'retrofitting-cost_factor' : 1.0
|
|
'tes' : True
|
|
'tes_tau' : 3.
|
|
'boilers' : True
|
|
'oil_boilers': False
|
|
'chp' : True
|
|
'solar_thermal' : True
|
|
'solar_cf_correction': 0.788457 # = >>> 1/1.2683
|
|
'marginal_cost_storage' : 0. #1e-4
|
|
'methanation' : True
|
|
'helmeth' : True
|
|
'dac' : True
|
|
'co2_vent' : True
|
|
'SMR' : True
|
|
'ccs_fraction' : 0.9
|
|
'hydrogen_underground_storage' : True
|
|
'use_fischer_tropsch_waste_heat' : True
|
|
'use_fuel_cell_waste_heat' : True
|
|
'electricity_distribution_grid' : False
|
|
'electricity_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
|
'electricity_grid_connection' : True # only applies to onshore wind and utility PV
|
|
|
|
costs:
|
|
year: 2030
|
|
lifetime: 25 #default lifetime
|
|
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
|
discountrate: 0.07
|
|
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
|
|
USD2013_to_EUR2013: 0.7532
|
|
|
|
# Marginal and capital costs can be overwritten
|
|
# capital_cost:
|
|
# Wind: Bla
|
|
marginal_cost: #
|
|
solar: 0.01
|
|
onwind: 0.015
|
|
offwind: 0.015
|
|
hydro: 0.
|
|
H2: 0.
|
|
battery: 0.
|
|
|
|
emission_prices: # only used with the option Ep (emission prices)
|
|
co2: 0.
|
|
|
|
lines:
|
|
length_factor: 1.25 #to estimate offwind connection costs
|
|
|
|
|
|
solving:
|
|
#tmpdir: "path/to/tmp"
|
|
options:
|
|
formulation: kirchhoff
|
|
clip_p_max_pu: 1.e-2
|
|
load_shedding: false
|
|
noisy_costs: true
|
|
|
|
min_iterations: 1
|
|
max_iterations: 1
|
|
# nhours: 1
|
|
|
|
solver:
|
|
name: gurobi
|
|
threads: 4
|
|
method: 2 # barrier
|
|
crossover: 0
|
|
BarConvTol: 1.e-5
|
|
Seed: 123
|
|
AggFill: 0
|
|
PreDual: 0
|
|
GURO_PAR_BARDENSETHRESH: 200
|
|
#FeasibilityTol: 1.e-6
|
|
|
|
#name: cplex
|
|
#threads: 4
|
|
#lpmethod: 4 # barrier
|
|
#solutiontype: 2 # non basic solution, ie no crossover
|
|
#barrier_convergetol: 1.e-5
|
|
#feasopt_tolerance: 1.e-6
|
|
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
|
|
|
|
industry:
|
|
'St_primary_fraction' : 0.3 # fraction of steel produced via primary route (DRI + EAF) versus secondary route (EAF); today fraction is 0.6
|
|
'H2_DRI' : 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
|
'Al_primary_fraction' : 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
|
'MWh_CH4_per_tNH3_SMR' : 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
|
'MWh_elec_per_tNH3_SMR' : 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
|
'MWh_H2_per_tNH3_electrolysis' : 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
|
'MWh_elec_per_tNH3_electrolysis' : 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
|
'NH3_process_emissions' : 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
|
'petrochemical_process_emissions' : 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
|
|
|
plotting:
|
|
map:
|
|
figsize: [7, 7]
|
|
boundaries: [-10.2, 29, 35, 72]
|
|
p_nom:
|
|
bus_size_factor: 5.e+4
|
|
linewidth_factor: 3.e+3 # 1.e+3 #3.e+3
|
|
|
|
costs_max: 1200
|
|
costs_threshold: 1
|
|
|
|
|
|
energy_max: 20000.
|
|
energy_min: -15000.
|
|
energy_threshold: 50.
|
|
|
|
|
|
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
|
renewable_storage_techs: ["PHS","hydro"]
|
|
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
|
storage_techs: ["hydro+PHS", "battery", "H2"]
|
|
# store_techs: ["Li ion", "water tanks"]
|
|
load_carriers: ["AC load"] #, "heat load", "Li ion load"]
|
|
AC_carriers: ["AC line", "AC transformer"]
|
|
link_carriers: ["DC line", "Converter AC-DC"]
|
|
heat_links: ["heat pump", "resistive heater", "CHP heat", "CHP electric",
|
|
"gas boiler", "central heat pump", "central resistive heater", "central CHP heat",
|
|
"central CHP electric", "central gas boiler"]
|
|
heat_generators: ["gas boiler", "central gas boiler", "solar thermal collector", "central solar thermal collector"]
|
|
tech_colors:
|
|
"onwind" : "b"
|
|
"onshore wind" : "b"
|
|
'offwind' : "c"
|
|
'offshore wind' : "c"
|
|
'offwind-ac' : "c"
|
|
'offshore wind (AC)' : "c"
|
|
'offwind-dc' : "#009999"
|
|
'offshore wind (DC)' : "#009999"
|
|
'wave' : "#004444"
|
|
"hydro" : "#3B5323"
|
|
"hydro reservoir" : "#3B5323"
|
|
"ror" : "#78AB46"
|
|
"run of river" : "#78AB46"
|
|
'hydroelectricity' : '#006400'
|
|
'solar' : "y"
|
|
'solar PV' : "y"
|
|
'solar thermal' : 'coral'
|
|
'solar rooftop' : '#e6b800'
|
|
"OCGT" : "wheat"
|
|
"OCGT marginal" : "sandybrown"
|
|
"OCGT-heat" : "orange"
|
|
"gas boiler" : "orange"
|
|
"gas boilers" : "orange"
|
|
"gas boiler marginal" : "orange"
|
|
"gas-to-power/heat" : "orange"
|
|
"gas" : "brown"
|
|
"natural gas" : "brown"
|
|
"SMR" : "#4F4F2F"
|
|
"oil" : "#B5A642"
|
|
"oil boiler" : "#B5A677"
|
|
"lines" : "k"
|
|
"transmission lines" : "k"
|
|
"H2" : "m"
|
|
"hydrogen storage" : "m"
|
|
"battery" : "slategray"
|
|
"battery storage" : "slategray"
|
|
"home battery" : "#614700"
|
|
"home battery storage" : "#614700"
|
|
"Nuclear" : "r"
|
|
"Nuclear marginal" : "r"
|
|
"nuclear" : "r"
|
|
"uranium" : "r"
|
|
"Coal" : "k"
|
|
"coal" : "k"
|
|
"Coal marginal" : "k"
|
|
"Lignite" : "grey"
|
|
"lignite" : "grey"
|
|
"Lignite marginal" : "grey"
|
|
"CCGT" : "orange"
|
|
"CCGT marginal" : "orange"
|
|
"heat pumps" : "#76EE00"
|
|
"heat pump" : "#76EE00"
|
|
"air heat pump" : "#76EE00"
|
|
"ground heat pump" : "#40AA00"
|
|
"power-to-heat" : "#40AA00"
|
|
"resistive heater" : "pink"
|
|
"Sabatier" : "#FF1493"
|
|
"methanation" : "#FF1493"
|
|
"power-to-gas" : "#FF1493"
|
|
"power-to-liquid" : "#FFAAE9"
|
|
"helmeth" : "#7D0552"
|
|
"helmeth" : "#7D0552"
|
|
"DAC" : "#E74C3C"
|
|
"co2 stored" : "#123456"
|
|
"CO2 sequestration" : "#123456"
|
|
"CCS" : "k"
|
|
"co2" : "#123456"
|
|
"co2 vent" : "#654321"
|
|
"solid biomass for industry co2 from atmosphere" : "#654321"
|
|
"solid biomass for industry co2 to stored": "#654321"
|
|
"gas for industry co2 to atmosphere": "#654321"
|
|
"gas for industry co2 to stored": "#654321"
|
|
"Fischer-Tropsch" : "#44DD33"
|
|
"kerosene for aviation": "#44BB11"
|
|
"naphtha for industry" : "#44FF55"
|
|
"water tanks" : "#BBBBBB"
|
|
"hot water storage" : "#BBBBBB"
|
|
"hot water charging" : "#BBBBBB"
|
|
"hot water discharging" : "#999999"
|
|
"CHP" : "r"
|
|
"CHP heat" : "r"
|
|
"CHP electric" : "r"
|
|
"PHS" : "g"
|
|
"Ambient" : "k"
|
|
"Electric load" : "b"
|
|
"Heat load" : "r"
|
|
"Transport load" : "grey"
|
|
"heat" : "darkred"
|
|
"rural heat" : "#880000"
|
|
"central heat" : "#b22222"
|
|
"decentral heat" : "#800000"
|
|
"low-temperature heat for industry" : "#991111"
|
|
"process heat" : "#FF3333"
|
|
"heat demand" : "darkred"
|
|
"electric demand" : "k"
|
|
"Li ion" : "grey"
|
|
"district heating" : "#CC4E5C"
|
|
"retrofitting" : "purple"
|
|
"building retrofitting" : "purple"
|
|
"BEV charger" : "grey"
|
|
"V2G" : "grey"
|
|
"transport" : "grey"
|
|
"electricity" : "k"
|
|
"gas for industry" : "#333333"
|
|
"solid biomass for industry" : "#555555"
|
|
"industry new electricity" : "#222222"
|
|
"process emissions to stored" : "#444444"
|
|
"process emissions to atmosphere" : "#888888"
|
|
"process emissions" : "#222222"
|
|
"transport fuel cell" : "#AAAAAA"
|
|
"biogas" : "#800000"
|
|
"solid biomass" : "#DAA520"
|
|
"today" : "#D2691E"
|
|
"shipping" : "#6495ED"
|
|
"electricity distribution grid" : "#333333"
|
|
nice_names:
|
|
# OCGT: "Gas"
|
|
# OCGT marginal: "Gas (marginal)"
|
|
offwind: "offshore wind"
|
|
onwind: "onshore wind"
|
|
battery: "Battery storage"
|
|
lines: "Transmission lines"
|
|
AC line: "AC lines"
|
|
AC-AC: "DC lines"
|
|
ror: "Run of river"
|
|
nice_names_n:
|
|
offwind: "offshore\nwind"
|
|
onwind: "onshore\nwind"
|
|
# OCGT: "Gas"
|
|
H2: "Hydrogen\nstorage"
|
|
# OCGT marginal: "Gas (marginal)"
|
|
lines: "transmission\nlines"
|
|
ror: "run of river"
|