pypsa-eur/scripts/build_country_flh.py
2019-08-11 22:34:18 +02:00

249 lines
9.6 KiB
Python

#!/usr/bin/env python
"""
Create ``.csv`` files and plots for comparing per country full load hours of renewable time series.
Relevant Settings
-----------------
.. code:: yaml
snapshots:
renewable:
{technology}:
cutout:
resource:
correction_factor:
Inputs
------
- ``data/bundle/corine/g250_clc06_V18_5.tif``:
.. image:: img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``:
- ``data/pietzker2014.xlsx``: NOT IN DATA BUNDLE!
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
- ``resources/country_flh_area_{technology}.csv``:
- ``resources/country_flh_aggregated_{technology}.csv``:
- ``resources/country_flh_uncorrected_{technology}.csv``:
- ``resources/country_flh_{technology}.pdf``:
- ``resources/country_exclusion_{technology}``:
Description
-----------
"""
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import geokit as gk
from osgeo import gdal
from scipy.sparse import vstack
import pycountry as pyc
import matplotlib.pyplot as plt
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
import logging
logger = logging.getLogger(__name__)
from build_renewable_profiles import init_globals, calculate_potential
def build_area(flh, countries, areamatrix, breaks, fn):
area_unbinned = xr.DataArray(areamatrix.todense(), [countries, capacity_factor.coords['spatial']])
bins = xr.DataArray(pd.cut(flh.to_series(), bins=breaks), flh.coords, name="bins")
area = area_unbinned.groupby(bins).sum(dim="spatial").to_pandas()
area.loc[:,slice(*area.sum()[lambda s: s > 0].index[[0,-1]])].to_csv(fn)
area.columns = area.columns.map(lambda s: s.left)
return area
def plot_area_not_solar(area, countries):
# onshore wind/offshore wind
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True)
for c, ax in zip(countries, axes):
d = a[[c]] / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def plot_area_solar(area, p_area, countries):
# onshore wind/offshore wind
p = p_area.T
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True, squeeze=False)
for c, ax in zip(countries, axes.flat):
d = pd.concat([a[c], p[c]], keys=['PyPSA-Eur', 'Pietzker'], axis=1) / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
# ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def build_aggregate(flh, countries, areamatrix, breaks, p_area, fn):
agg_a = pd.Series(np.ravel((areamatrix / areamatrix.sum(axis=1)).dot(flh.values)),
countries, name="PyPSA-Eur")
if p_area is None:
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
agg = pd.DataFrame({'PyPSA-Eur': agg_a})
else:
# Determine indices of countries which are also in Pietzcker
inds = pd.Index(countries).get_indexer(p_area.index)
areamatrix = areamatrix[inds]
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
midpoints = (breaks[1:] + breaks[:-1])/2.
p = p_area.T
# Per-country FLH comparison
agg_p = pd.Series((p / p.sum()).multiply(midpoints, axis=0).sum(), name="Pietzker")
agg_p['Overall'] = float((p.sum(axis=1) / p.sum().sum()).multiply(midpoints, axis=0).sum())
agg = pd.DataFrame({'PyPSA-Eur': agg_a, 'Pietzcker': agg_p, 'Ratio': agg_p / agg_a})
agg.to_csv(fn)
if __name__ == '__main__':
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
wildcards=Dict(technology='solar'),
input=Dict(
base_network="networks/base.nc",
corine="data/bundle/corine/g250_clc06_V18_5.tif",
natura="resources/natura.tiff",
gebco="data/bundle/GEBCO_2014_2D.nc",
country_shapes='resources/country_shapes.geojson',
offshore_shapes='resources/offshore_shapes.geojson',
pietzker="data/pietzker2014.xlsx"
),
output=Dict(
area="resources/country_flh_area_{technology}.csv",
aggregated="resources/country_flh_aggregated_{technology}.csv",
uncorrected="resources/country_flh_uncorrected_{technology}.csv",
plot="resources/country_flh_{technology}.pdf",
exclusion="resources/country_exclusion_{technology}"
)
)
snakemake.input['regions'] = os.path.join(snakemake.path, "resources",
"country_shapes.geojson"
if snakemake.wildcards.technology in ('onwind', 'solar')
else "offshore_shapes.geojson")
snakemake.input['cutout'] = os.path.join(snakemake.path, "cutouts",
snakemake.config["renewable"][snakemake.wildcards.technology]['cutout'])
pgb.streams.wrap_stderr()
logging.basicConfig(level=snakemake.config['logging_level'])
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds = gk.Extent.from_xXyY((minx - dx/2., maxx + dx/2.,
miny - dy/2., maxy + dy/2.))
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
init_globals(bounds, dx, dy, config, paths)
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
countries = pd.Index(regions["name"], name="country")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(countries))
if not os.path.isdir(snakemake.output.exclusion):
os.makedirs(snakemake.output.exclusion)
matrix = vstack([calculate_potential(i, save_map=os.path.join(snakemake.output.exclusion, countries[i]))
for i in progressbar(regions.index)])
areamatrix = matrix * spdiag(vlanduse._cutout_cell_areas(cutout).ravel())
areamatrix.data[areamatrix.data < 1.] = 0 # ignore weather cells where only less than 1 km^2 can be installed
areamatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
capacity_factor = func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x'))
flh_uncorr = capacity_factor * 8760
flh_corr = correction_factor * flh_uncorr
if snakemake.wildcards.technology == 'solar':
pietzcker = pd.read_excel(snakemake.input.pietzker, sheet_name="PV on all area", skiprows=2, header=[0,1]).iloc[1:177]
p_area1_50 = pietzcker['Usable Area at given FLh in 1-50km distance to settlement '].dropna(axis=1)
p_area1_50.columns = p_area1_50.columns.str.split(' ').str[0]
p_area50_100 = pietzcker['Usable Area at given FLh in 50-100km distance to settlement ']
p_area = p_area1_50 + p_area50_100
cols = p_area.columns
breaks = cols.str.split('-').str[0].append(pd.Index([cols[-1].split('-')[1]])).astype(int)
p_area.columns = breaks[:-1]
p_area = p_area.reindex(countries.map(lambda c: pyc.countries.get(alpha_2=c).name))
p_area.index = countries
p_area = p_area.dropna() # Pietzcker does not have data for CZ and MK
else:
breaks = np.r_[0:8000:50]
p_area = None
area = build_area(flh_corr, countries, areamatrix, breaks, snakemake.output.area)
if snakemake.wildcards.technology == 'solar':
plot_area_solar(area, p_area, p_area.index)
else:
plot_area_not_solar(area, countries)
build_aggregate(flh_uncorr, countries, areamatrix, breaks, p_area, snakemake.output.uncorrected)
build_aggregate(flh_corr, countries, areamatrix, breaks, p_area, snakemake.output.aggregated)