pypsa-eur/scripts/build_temperature_profiles.py
Fabian Neumann eab315291e
remove {scope} wildcard (#1171)
* remove {scope} wildcard

* do not create removed files
2024-07-24 13:19:57 +02:00

97 lines
2.7 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build time series for air and soil temperatures per clustered model region.
Uses ``atlite.Cutout.temperature`` and ``atlite.Cutout.soil_temperature compute temperature ambient air and soil temperature for the respective cutout. The rule is executed in ``build_sector.smk``.
.. seealso::
`Atlite.Cutout.temperature <https://atlite.readthedocs.io/en/master/ref_api.html#module-atlite.convert>`_
`Atlite.Cutout.soil_temperature <https://atlite.readthedocs.io/en/master/ref_api.html#module-atlite.convert>`_
Relevant Settings
-----------------
.. code:: yaml
snapshots:
drop_leap_day:
atlite:
default_cutout:
Inputs
------
- ``resources/<run_name>/pop_layout_total.nc``:
- ``resources/<run_name>/regions_onshore_elec_s<simpl>_<clusters>.geojson``:
- ``cutout``: Weather data cutout, as specified in config
Outputs
-------
- ``resources/temp_soil_total_elec_s<simpl>_<clusters>.nc``:
- ``resources/temp_air_total_elec_s<simpl>_<clusters>.nc`
"""
import atlite
import geopandas as gpd
import numpy as np
import xarray as xr
from _helpers import get_snapshots, set_scenario_config
from dask.distributed import Client, LocalCluster
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_temperature_profiles",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
clustered_regions = (
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
)
I = cutout.indicatormatrix(clustered_regions) # noqa: E741
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
stacked_pop = pop_layout.stack(spatial=("y", "x"))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.0] = 1.0
M_tilde = M / nonzero_sum
temp_air = cutout.temperature(
matrix=M_tilde.T,
index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False,
)
temp_air.to_netcdf(snakemake.output.temp_air)
temp_soil = cutout.soil_temperature(
matrix=M_tilde.T,
index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False,
)
temp_soil.to_netcdf(snakemake.output.temp_soil)