170 lines
5.0 KiB
Python
170 lines
5.0 KiB
Python
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
"""
|
|
Creates Voronoi shapes for each bus representing both onshore and offshore regions.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
countries:
|
|
|
|
.. seealso::
|
|
Documentation of the configuration file ``config.yaml`` at
|
|
:ref:`toplevel_cf`
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
|
|
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
|
|
- ``networks/base.nc``: confer :ref:`base`
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``resources/regions_onshore.geojson``:
|
|
|
|
.. image:: ../img/regions_onshore.png
|
|
:scale: 33 %
|
|
|
|
- ``resources/regions_offshore.geojson``:
|
|
|
|
.. image:: ../img/regions_offshore.png
|
|
:scale: 33 %
|
|
|
|
Description
|
|
-----------
|
|
|
|
"""
|
|
|
|
import logging
|
|
from _helpers import configure_logging
|
|
|
|
import pypsa
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import geopandas as gpd
|
|
from shapely.geometry import Polygon
|
|
from scipy.spatial import Voronoi
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def save_to_geojson(s, fn):
|
|
if os.path.exists(fn):
|
|
os.unlink(fn)
|
|
schema = {**gpd.io.file.infer_schema(s), 'geometry': 'Unknown'}
|
|
s.to_file(fn, driver='GeoJSON', schema=schema)
|
|
|
|
|
|
def voronoi_partition_pts(points, outline, no_multipolygons=False):
|
|
"""
|
|
Compute the polygons of a voronoi partition of `points` within the
|
|
polygon `outline`. Taken from
|
|
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py
|
|
Attributes
|
|
----------
|
|
points : Nx2 - ndarray[dtype=float]
|
|
outline : Polygon
|
|
no_multipolygons : bool (default: False)
|
|
If true, replace each MultiPolygon by its largest component
|
|
Returns
|
|
-------
|
|
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
|
|
"""
|
|
|
|
points = np.asarray(points)
|
|
|
|
if len(points) == 1:
|
|
polygons = [outline]
|
|
else:
|
|
xmin, ymin = np.amin(points, axis=0)
|
|
xmax, ymax = np.amax(points, axis=0)
|
|
xspan = xmax - xmin
|
|
yspan = ymax - ymin
|
|
|
|
# to avoid any network positions outside all Voronoi cells, append
|
|
# the corners of a rectangle framing these points
|
|
vor = Voronoi(np.vstack((points,
|
|
[[xmin-3.*xspan, ymin-3.*yspan],
|
|
[xmin-3.*xspan, ymax+3.*yspan],
|
|
[xmax+3.*xspan, ymin-3.*yspan],
|
|
[xmax+3.*xspan, ymax+3.*yspan]])))
|
|
|
|
polygons = []
|
|
for i in range(len(points)):
|
|
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
|
|
|
|
if not poly.is_valid:
|
|
poly = poly.buffer(0)
|
|
|
|
poly = poly.intersection(outline)
|
|
|
|
polygons.append(poly)
|
|
|
|
if no_multipolygons:
|
|
def demultipolygon(poly):
|
|
try:
|
|
# for a MultiPolygon pick the part with the largest area
|
|
poly = max(poly.geoms, key=lambda pg: pg.area)
|
|
except:
|
|
pass
|
|
return poly
|
|
polygons = [demultipolygon(poly) for poly in polygons]
|
|
|
|
polygons_arr = np.empty((len(polygons),), 'object')
|
|
polygons_arr[:] = polygons
|
|
return polygons_arr
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from _helpers import mock_snakemake
|
|
snakemake = mock_snakemake('build_bus_regions')
|
|
configure_logging(snakemake)
|
|
|
|
countries = snakemake.config['countries']
|
|
|
|
n = pypsa.Network(snakemake.input.base_network)
|
|
|
|
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry']
|
|
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes).set_index('name')['geometry']
|
|
|
|
onshore_regions = []
|
|
offshore_regions = []
|
|
|
|
for country in countries:
|
|
c_b = n.buses.country == country
|
|
|
|
onshore_shape = country_shapes[country]
|
|
onshore_locs = n.buses.loc[c_b & n.buses.substation_lv, ["x", "y"]]
|
|
onshore_regions.append(gpd.GeoDataFrame({
|
|
'name': onshore_locs.index,
|
|
'x': onshore_locs['x'],
|
|
'y': onshore_locs['y'],
|
|
'geometry': voronoi_partition_pts(onshore_locs.values, onshore_shape),
|
|
'country': country
|
|
}))
|
|
|
|
if country not in offshore_shapes.index: continue
|
|
offshore_shape = offshore_shapes[country]
|
|
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
|
|
offshore_regions_c = gpd.GeoDataFrame({
|
|
'name': offshore_locs.index,
|
|
'x': offshore_locs['x'],
|
|
'y': offshore_locs['y'],
|
|
'geometry': voronoi_partition_pts(offshore_locs.values, offshore_shape),
|
|
'country': country
|
|
})
|
|
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
|
|
offshore_regions.append(offshore_regions_c)
|
|
|
|
save_to_geojson(pd.concat(onshore_regions, ignore_index=True), snakemake.output.regions_onshore)
|
|
|
|
save_to_geojson(pd.concat(offshore_regions, ignore_index=True), snakemake.output.regions_offshore)
|