pypsa-eur/scripts/make_summary.py
2023-02-06 22:28:32 +00:00

584 lines
17 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Creates summaries of aggregated energy and costs as ``.csv`` files.
Relevant Settings
-----------------
.. code:: yaml
costs:
year:
version:
fill_values:
marginal_cost:
capital_cost:
electricity:
max_hours:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`costs_cf`, :ref:`electricity_cf`
Inputs
------
Outputs
-------
Description
-----------
The following rule can be used to summarize the results in separate .csv files:
.. code:: bash
snakemake results/summaries/elec_s_all_lall_Co2L-3H_all
clusters
line volume or cost cap
- options
- all countries
the line volume/cost cap field can be set to one of the following:
* ``lv1.25`` for a particular line volume extension by 25%
* ``lc1.25`` for a line cost extension by 25 %
* ``lall`` for all evaluated caps
* ``lvall`` for all line volume caps
* ``lcall`` for all line cost caps
Replacing '/summaries/' with '/plots/' creates nice colored maps of the results.
"""
import logging
import os
import pandas as pd
import pypsa
from _helpers import configure_logging
from add_electricity import load_costs, update_transmission_costs
idx = pd.IndexSlice
logger = logging.getLogger(__name__)
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}
def _add_indexed_rows(df, raw_index):
new_index = df.index.union(pd.MultiIndex.from_product(raw_index))
if isinstance(new_index, pd.Index):
new_index = pd.MultiIndex.from_tuples(new_index)
return df.reindex(new_index)
def assign_carriers(n):
if "carrier" not in n.loads:
n.loads["carrier"] = "electricity"
for carrier in ["transport", "heat", "urban heat"]:
n.loads.loc[n.loads.index.str.contains(carrier), "carrier"] = carrier
n.storage_units["carrier"].replace(
{"hydro": "hydro+PHS", "PHS": "hydro+PHS"}, inplace=True
)
if "carrier" not in n.lines:
n.lines["carrier"] = "AC"
n.lines["carrier"].replace({"AC": "lines"}, inplace=True)
if n.links.empty:
n.links["carrier"] = pd.Series(dtype=str)
n.links["carrier"].replace({"DC": "lines"}, inplace=True)
if (
"EU gas store" in n.stores.index
and n.stores.loc["EU gas Store", "carrier"] == ""
):
n.stores.loc["EU gas Store", "carrier"] = "gas Store"
def calculate_costs(n, label, costs):
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
):
capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum()
# Index tuple(s) indicating the newly to-be-added row(s)
raw_index = tuple(
[[c.list_name], ["capital"], list(capital_costs_grouped.index)]
)
costs = _add_indexed_rows(costs, raw_index)
costs.loc[idx[raw_index], label] = capital_costs_grouped.values
if c.name == "Link":
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
elif c.name == "Line":
continue
elif c.name == "StorageUnit":
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
p_all[p_all < 0.0] = 0.0
p = p_all.sum()
else:
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
marginal_costs = p * c.df.marginal_cost
marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum()
costs = costs.reindex(
costs.index.union(
pd.MultiIndex.from_product(
[[c.list_name], ["marginal"], marginal_costs_grouped.index]
)
)
)
costs.loc[
idx[c.list_name, "marginal", list(marginal_costs_grouped.index)], label
] = marginal_costs_grouped.values
return costs
def calculate_curtailment(n, label, curtailment):
avail = (
n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt)
.sum()
.groupby(n.generators.carrier)
.sum()
)
used = n.generators_t.p.sum().groupby(n.generators.carrier).sum()
curtailment[label] = (((avail - used) / avail) * 100).round(3)
return curtailment
def calculate_energy(n, label, energy):
for c in n.iterate_components(n.one_port_components | n.branch_components):
if c.name in {"Generator", "Load", "ShuntImpedance"}:
c_energies = (
c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
.sum()
.multiply(c.df.sign)
.groupby(c.df.carrier)
.sum()
)
elif c.name in {"StorageUnit", "Store"}:
c_energies = (
c.pnl.p.multiply(n.snapshot_weightings.stores, axis=0)
.sum()
.multiply(c.df.sign)
.groupby(c.df.carrier)
.sum()
)
else:
c_energies = (
(
-c.pnl.p1.multiply(n.snapshot_weightings.generators, axis=0).sum()
- c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
)
.groupby(c.df.carrier)
.sum()
)
energy = include_in_summary(energy, [c.list_name], label, c_energies)
return energy
def include_in_summary(summary, multiindexprefix, label, item):
# Index tuple(s) indicating the newly to-be-added row(s)
raw_index = tuple([multiindexprefix, list(item.index)])
summary = _add_indexed_rows(summary, raw_index)
summary.loc[idx[raw_index], label] = item.values
return summary
def calculate_capacity(n, label, capacity):
for c in n.iterate_components(n.one_port_components):
if "p_nom_opt" in c.df.columns:
c_capacities = (
abs(c.df.p_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
)
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
elif "e_nom_opt" in c.df.columns:
c_capacities = (
abs(c.df.e_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
)
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
for c in n.iterate_components(n.passive_branch_components):
c_capacities = c.df["s_nom_opt"].groupby(c.df.carrier).sum()
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
for c in n.iterate_components(n.controllable_branch_components):
c_capacities = c.df.p_nom_opt.groupby(c.df.carrier).sum()
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
return capacity
def calculate_supply(n, label, supply):
"""
calculate the max dispatch of each component at the buses where the loads
are attached.
"""
load_types = n.buses.carrier.unique()
for i in load_types:
buses = n.buses.query("carrier == @i").index
bus_map = pd.Series(False, index=n.buses.index)
bus_map.loc[buses] = True
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map)]
if len(items) == 0 or c.pnl.p.empty:
continue
s = (
c.pnl.p[items]
.max()
.multiply(c.df.loc[items, "sign"])
.groupby(c.df.loc[items, "carrier"])
.sum()
)
# Index tuple(s) indicating the newly to-be-added row(s)
raw_index = tuple([[i], [c.list_name], list(s.index)])
supply = _add_indexed_rows(supply, raw_index)
supply.loc[idx[raw_index], label] = s.values
for c in n.iterate_components(n.branch_components):
for end in ["0", "1"]:
items = c.df.index[c.df["bus" + end].map(bus_map)]
if len(items) == 0 or c.pnl["p" + end].empty:
continue
# lots of sign compensation for direction and to do maximums
s = (-1) ** (1 - int(end)) * (
(-1) ** int(end) * c.pnl["p" + end][items]
).max().groupby(c.df.loc[items, "carrier"]).sum()
supply = supply.reindex(
supply.index.union(
pd.MultiIndex.from_product([[i], [c.list_name], s.index])
)
)
supply.loc[idx[i, c.list_name, list(s.index)], label] = s.values
return supply
def calculate_supply_energy(n, label, supply_energy):
"""
calculate the total dispatch of each component at the buses where the loads
are attached.
"""
load_types = n.buses.carrier.unique()
for i in load_types:
buses = n.buses.query("carrier == @i").index
bus_map = pd.Series(False, index=n.buses.index)
bus_map.loc[buses] = True
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map)]
if len(items) == 0 or c.pnl.p.empty:
continue
s = (
c.pnl.p[items]
.sum()
.multiply(c.df.loc[items, "sign"])
.groupby(c.df.loc[items, "carrier"])
.sum()
)
# Index tuple(s) indicating the newly to-be-added row(s)
raw_index = tuple([[i], [c.list_name], list(s.index)])
supply_energy = _add_indexed_rows(supply_energy, raw_index)
supply_energy.loc[idx[raw_index], label] = s.values
for c in n.iterate_components(n.branch_components):
for end in ["0", "1"]:
items = c.df.index[c.df["bus" + end].map(bus_map)]
if len(items) == 0 or c.pnl["p" + end].empty:
continue
s = (-1) * c.pnl["p" + end][items].sum().groupby(
c.df.loc[items, "carrier"]
).sum()
supply_energy = supply_energy.reindex(
supply_energy.index.union(
pd.MultiIndex.from_product([[i], [c.list_name], s.index])
)
)
supply_energy.loc[idx[i, c.list_name, list(s.index)], label] = s.values
return supply_energy
def calculate_metrics(n, label, metrics):
metrics = metrics.reindex(
metrics.index.union(
pd.Index(
[
"line_volume",
"line_volume_limit",
"line_volume_AC",
"line_volume_DC",
"line_volume_shadow",
"co2_shadow",
]
)
)
)
metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[
n.links.carrier == "DC"
].sum()
metrics.at["line_volume_AC", label] = (n.lines.length * n.lines.s_nom_opt).sum()
metrics.at["line_volume", label] = metrics.loc[
["line_volume_AC", "line_volume_DC"], label
].sum()
if hasattr(n, "line_volume_limit"):
metrics.at["line_volume_limit", label] = n.line_volume_limit
if hasattr(n, "line_volume_limit_dual"):
metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual
if "CO2Limit" in n.global_constraints.index:
metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"]
return metrics
def calculate_prices(n, label, prices):
bus_type = pd.Series(n.buses.index.str[3:], n.buses.index).replace(
"", "electricity"
)
prices = prices.reindex(prices.index.union(bus_type.value_counts().index))
logger.warning("Prices are time-averaged, not load-weighted")
prices[label] = n.buses_t.marginal_price.mean().groupby(bus_type).mean()
return prices
def calculate_weighted_prices(n, label, weighted_prices):
logger.warning("Weighted prices don't include storage units as loads")
weighted_prices = weighted_prices.reindex(
pd.Index(
[
"electricity",
"heat",
"space heat",
"urban heat",
"space urban heat",
"gas",
"H2",
]
)
)
link_loads = {
"electricity": [
"heat pump",
"resistive heater",
"battery charger",
"H2 Electrolysis",
],
"heat": ["water tanks charger"],
"urban heat": ["water tanks charger"],
"space heat": [],
"space urban heat": [],
"gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"],
"H2": ["Sabatier", "H2 Fuel Cell"],
}
for carrier in link_loads:
if carrier == "electricity":
suffix = ""
elif carrier[:5] == "space":
suffix = carrier[5:]
else:
suffix = " " + carrier
buses = n.buses.index[n.buses.index.str[2:] == suffix]
if buses.empty:
continue
if carrier in ["H2", "gas"]:
load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
elif carrier[:5] == "space":
load = heat_demand_df[buses.str[:2]].rename(
columns=lambda i: str(i) + suffix
)
else:
load = n.loads_t.p_set[buses]
for tech in link_loads[carrier]:
names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech]
if names.empty:
continue
load += (
n.links_t.p0[names]
.groupby(n.links.loc[names, "bus0"], axis=1)
.sum(axis=1)
)
# Add H2 Store when charging
if carrier == "H2":
stores = (
n.stores_t.p[buses + " Store"]
.groupby(n.stores.loc[buses + " Store", "bus"], axis=1)
.sum(axis=1)
)
stores[stores > 0.0] = 0.0
load += -stores
weighted_prices.loc[carrier, label] = (
load * n.buses_t.marginal_price[buses]
).sum().sum() / load.sum().sum()
if carrier[:5] == "space":
print(load * n.buses_t.marginal_price[buses])
return weighted_prices
outputs = [
"costs",
"curtailment",
"energy",
"capacity",
"supply",
"supply_energy",
"prices",
"weighted_prices",
"metrics",
]
def make_summaries(networks_dict, paths, config, country="all"):
columns = pd.MultiIndex.from_tuples(
networks_dict.keys(), names=["simpl", "clusters", "ll", "opts"]
)
dfs = {}
for output in outputs:
dfs[output] = pd.DataFrame(columns=columns, dtype=float)
for label, filename in networks_dict.items():
print(label, filename)
if not os.path.exists(filename):
print("does not exist!!")
continue
try:
n = pypsa.Network(filename)
except OSError:
logger.warning("Skipping {filename}".format(filename=filename))
continue
if country != "all":
n = n[n.buses.country == country]
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
costs = load_costs(paths[0], config["costs"], config["electricity"], Nyears)
update_transmission_costs(n, costs)
assign_carriers(n)
for output in outputs:
dfs[output] = globals()["calculate_" + output](n, label, dfs[output])
return dfs
def to_csv(dfs, dir):
os.makedirs(dir, exist_ok=True)
for key, df in dfs.items():
df.to_csv(os.path.join(dir, f"{key}.csv"))
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"make_summary",
simpl="",
clusters="5",
ll="copt",
opts="Co2L-24H",
country="all",
)
network_dir = os.path.join(
"..", "results", "networks", snakemake.config["run"]["name"]
)
else:
network_dir = os.path.join(
"results", "networks", snakemake.config["run"]["name"]
)
configure_logging(snakemake)
config = snakemake.config
wildcards = snakemake.wildcards
def expand_from_wildcard(key, config):
w = getattr(wildcards, key)
return config["scenario"][key] if w == "all" else [w]
if wildcards.ll.endswith("all"):
ll = config["scenario"]["ll"]
if len(wildcards.ll) == 4:
ll = [l for l in ll if l[0] == wildcards.ll[0]]
else:
ll = [wildcards.ll]
networks_dict = {
(simpl, clusters, l, opts): os.path.join(
network_dir, f"elec_s{simpl}_" f"{clusters}_ec_l{l}_{opts}.nc"
)
for simpl in expand_from_wildcard("simpl", config)
for clusters in expand_from_wildcard("clusters", config)
for l in ll
for opts in expand_from_wildcard("opts", config)
}
dfs = make_summaries(
networks_dict, snakemake.input, config, country=wildcards.country
)
to_csv(dfs, snakemake.output[0])