88 lines
2.5 KiB
Python
88 lines
2.5 KiB
Python
"""
|
|
Plot renewable installation potentials per capacity factor
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
Inputs
|
|
------
|
|
|
|
Outputs
|
|
-------
|
|
|
|
Description
|
|
-----------
|
|
|
|
"""
|
|
|
|
import pypsa
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
def cum_p_nom_max(net, tech, country=None):
|
|
carrier_b = net.generators.carrier == tech
|
|
|
|
generators = \
|
|
pd.DataFrame(dict(
|
|
p_nom_max=net.generators.loc[carrier_b, 'p_nom_max'],
|
|
p_max_pu=net.generators_t.p_max_pu.loc[:,carrier_b].mean(),
|
|
country=net.generators.loc[carrier_b, 'bus'].map(net.buses.country)
|
|
)).sort_values("p_max_pu", ascending=False)
|
|
|
|
if country is not None:
|
|
generators = generators.loc[generators.country == country]
|
|
|
|
generators["cum_p_nom_max"] = generators["p_nom_max"].cumsum() / 1e6
|
|
|
|
return generators
|
|
|
|
|
|
if __name__ == __main__:
|
|
# Detect running outside of snakemake and mock snakemake for testing
|
|
if 'snakemake' not in globals():
|
|
from vresutils.snakemake import MockSnakemake, Dict
|
|
snakemake = MockSnakemake(
|
|
path='..',
|
|
wildcards={'clusters': '45,90,181,full',
|
|
'country': 'all'},
|
|
params=dict(techs=['onwind', 'offwind-ac', 'offwind-dc', 'solar']),
|
|
input=Dict(
|
|
**{
|
|
'full': 'networks/elec_s.nc',
|
|
'45': 'networks/elec_s_45.nc',
|
|
'90': 'networks/elec_s_90.nc',
|
|
'181': 'networks/elec_s_181.nc',
|
|
}
|
|
),
|
|
output=['results/plots/cum_p_nom_max_{clusters}_{country}.pdf']
|
|
)
|
|
|
|
logging.basicConfig(level=snakemake.config['logging_level'])
|
|
|
|
plot_kwds = dict(drawstyle="steps-post")
|
|
|
|
clusters = snakemake.wildcards.clusters.split(',')
|
|
techs = snakemake.params.techs
|
|
country = snakemake.wildcards.country
|
|
if country == 'all':
|
|
country = None
|
|
else:
|
|
plot_kwds['marker'] = 'x'
|
|
|
|
fig, axes = plt.subplots(1, len(techs))
|
|
|
|
for cluster in clusters:
|
|
net = pypsa.Network(getattr(snakemake.input, cluster))
|
|
|
|
for i, tech in enumerate(techs):
|
|
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="c_p_nom_max", label=cluster, ax=axes[0][i], **plot_kwds)
|
|
|
|
for i, tech in enumerate(techs):
|
|
ax = axes[0][i]
|
|
ax.set_xlabel(f"Capacity factor of {tech}")
|
|
ax.set_ylabel("Cumulative installable capacity / TW")
|
|
|
|
plt.legend(title="Cluster level")
|
|
|
|
fig.savefig(snakemake.output[0], transparent=True, bbox_inches='tight')
|