pypsa-eur/scripts/plot_summary.py
2022-07-27 09:43:36 +02:00

182 lines
4.3 KiB
Python

# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Plots energy and cost summaries for solved networks.
Relevant Settings
-----------------
Inputs
------
Outputs
-------
Description
-----------
"""
import os
import logging
from _helpers import configure_logging
import pandas as pd
import matplotlib.pyplot as plt
logger = logging.getLogger(__name__)
def rename_techs(label):
if "H2" in label:
label = "hydrogen storage"
elif label == "solar":
label = "solar PV"
elif label == "offwind-ac":
label = "offshore wind ac"
elif label == "offwind-dc":
label = "offshore wind dc"
elif label == "onwind":
label = "onshore wind"
elif label == "ror":
label = "hydroelectricity"
elif label == "hydro":
label = "hydroelectricity"
elif label == "PHS":
label = "hydroelectricity"
elif "battery" in label:
label = "battery storage"
return label
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","onshore wind","offshore wind ac", "offshore wind dc","solar PV","solar thermal","OCGT","hydrogen storage","battery storage"])
def plot_costs(infn, config, fn=None):
## For now ignore the simpl header
cost_df = pd.read_csv(infn,index_col=list(range(3)),header=[1,2,3])
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
#convert to billions
df = df/1e9
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.max(axis=1) < config['plotting']['costs_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([0,config['plotting']['costs_max']])
ax.set_ylabel("System Cost [EUR billion per year]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
if fn is not None:
fig.savefig(fn, transparent=True)
def plot_energy(infn, config, fn=None):
energy_df = pd.read_csv(infn, index_col=list(range(2)),header=[1,2,3])
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
#convert MWh to TWh
df = df/1e6
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < config['plotting']['energy_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([config['plotting']['energy_min'], config['plotting']['energy_max']])
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
if fn is not None:
fig.savefig(fn, transparent=True)
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('plot_summary', summary='energy',
simpl='', clusters=5, ll='copt', opts='Co2L-24H',
attr='', ext='png', country='all')
configure_logging(snakemake)
config = snakemake.config
summary = snakemake.wildcards.summary
try:
func = globals()[f"plot_{summary}"]
except KeyError:
raise RuntimeError(f"plotting function for {summary} has not been defined")
func(os.path.join(snakemake.input[0], f"{summary}.csv"), config, snakemake.output[0])