2022 lines
86 KiB
Python
2022 lines
86 KiB
Python
# coding: utf-8
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
import pandas as pd
|
|
idx = pd.IndexSlice
|
|
|
|
import numpy as np
|
|
import scipy as sp
|
|
import xarray as xr
|
|
import re, os
|
|
|
|
from six import iteritems, string_types
|
|
|
|
import pypsa
|
|
|
|
import yaml
|
|
|
|
import pytz
|
|
|
|
from vresutils.costdata import annuity
|
|
|
|
|
|
#First tell PyPSA that links can have multiple outputs by
|
|
#overriding the component_attrs. This can be done for
|
|
#as many buses as you need with format busi for i = 2,3,4,5,....
|
|
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
|
|
|
|
|
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
|
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
|
|
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
|
|
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
|
|
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
|
|
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
|
|
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
|
|
|
|
override_component_attrs["Link"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
|
override_component_attrs["Link"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
|
|
override_component_attrs["Generator"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
|
override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
|
|
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
|
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
|
|
|
|
def add_lifetime_wind_solar(n):
|
|
"""
|
|
Add lifetime for solar and wind generators
|
|
"""
|
|
for carrier in ['solar', 'onwind', 'offwind-dc', 'offwind-ac']:
|
|
carrier_name='offwind' if carrier in ['offwind-dc', 'offwind-ac'] else carrier
|
|
n.generators.loc[[index for index in n.generators.index.to_list()
|
|
if carrier in index], 'lifetime']=costs.at[carrier_name,'lifetime']
|
|
|
|
def update_wind_solar_costs(n,costs):
|
|
"""
|
|
Update costs for wind and solar generators added with pypsa-eur to those
|
|
cost in the planning year
|
|
|
|
"""
|
|
|
|
#NB: solar costs are also manipulated for rooftop
|
|
#when distribution grid is inserted
|
|
n.generators.loc[n.generators.carrier=='solar','capital_cost'] = costs.at['solar-utility', 'fixed']
|
|
|
|
n.generators.loc[n.generators.carrier=='onwind','capital_cost'] = costs.at['onwind', 'fixed']
|
|
|
|
#for offshore wind, need to calculated connection costs
|
|
|
|
#assign clustered bus
|
|
#map initial network -> simplified network
|
|
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
|
|
busmap_s.index = busmap_s.index.astype(str)
|
|
busmap_s = busmap_s.astype(str)
|
|
#map simplified network -> clustered network
|
|
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
|
|
busmap.index = busmap.index.astype(str)
|
|
busmap = busmap.astype(str)
|
|
#map initial network -> clustered network
|
|
clustermaps = busmap_s.map(busmap)
|
|
|
|
#code adapted from pypsa-eur/scripts/add_electricity.py
|
|
for connection in ['dc','ac']:
|
|
tech = "offwind-" + connection
|
|
profile = snakemake.input['profile_offwind_' + connection]
|
|
with xr.open_dataset(profile) as ds:
|
|
underwater_fraction = ds['underwater_fraction'].to_pandas()
|
|
connection_cost = (snakemake.config['costs']['lines']['length_factor'] *
|
|
ds['average_distance'].to_pandas() *
|
|
(underwater_fraction *
|
|
costs.at[tech + '-connection-submarine', 'fixed'] +
|
|
(1. - underwater_fraction) *
|
|
costs.at[tech + '-connection-underground', 'fixed']))
|
|
|
|
#convert to aggregated clusters with weighting
|
|
weight = ds['weight'].to_pandas()
|
|
|
|
#e.g. clusters == 37m means that VRE generators are left
|
|
#at clustering of simplified network, but that they are
|
|
#connected to 37-node network
|
|
if snakemake.wildcards.clusters[-1:] == "m":
|
|
genmap = busmap_s
|
|
else:
|
|
genmap = clustermaps
|
|
|
|
connection_cost = (connection_cost*weight).groupby(genmap).sum()/weight.groupby(genmap).sum()
|
|
|
|
capital_cost = (costs.at['offwind', 'fixed'] +
|
|
costs.at[tech + '-station', 'fixed'] +
|
|
connection_cost)
|
|
|
|
logger.info("Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}"
|
|
.format(connection_cost[0].min(), connection_cost[0].max(), tech))
|
|
|
|
n.generators.loc[n.generators.carrier==tech,'capital_cost'] = capital_cost.rename(index=lambda node: node + ' ' + tech)
|
|
|
|
|
|
def retro_exogen(demand, dE):
|
|
"""
|
|
reduces space heat demand exogenously
|
|
demand: current space heat demand
|
|
dE: energy savings
|
|
"""
|
|
return demand * (1-dE)
|
|
def add_carrier_buses(n, carriers):
|
|
"""
|
|
Add buses to connect e.g. coal, nuclear and oil plants
|
|
"""
|
|
|
|
for carrier in carriers:
|
|
|
|
n.add("Carrier",
|
|
carrier)
|
|
|
|
#use madd to get location inserted
|
|
n.madd("Bus",
|
|
["EU " + carrier],
|
|
location="EU",
|
|
carrier=carrier)
|
|
|
|
#use madd to get carrier inserted
|
|
n.madd("Store",
|
|
["EU " + carrier + " Store"],
|
|
bus=["EU " + carrier],
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier=carrier,
|
|
capital_cost=0.) #could correct to e.g. 0.2 EUR/kWh * annuity and O&M
|
|
|
|
n.add("Generator",
|
|
"EU " + carrier,
|
|
bus="EU " + carrier,
|
|
p_nom_extendable=True,
|
|
carrier=carrier,
|
|
capital_cost=0.,
|
|
marginal_cost=costs.at[carrier,'fuel'])
|
|
|
|
|
|
def remove_elec_base_techs(n):
|
|
"""remove conventional generators (e.g. OCGT) and storage units (e.g. batteries and H2)
|
|
from base electricity-only network, since they're added here differently using links
|
|
"""
|
|
to_keep = {"generators" : snakemake.config["plotting"]["vre_techs"],
|
|
"storage_units" : snakemake.config["plotting"]["renewable_storage_techs"]}
|
|
|
|
n.carriers = n.carriers.loc[to_keep["generators"] + to_keep["storage_units"]]
|
|
|
|
for components, techs in iteritems(to_keep):
|
|
df = getattr(n,components)
|
|
to_remove = df.carrier.value_counts().index^techs
|
|
print("removing {} with carrier {}".format(components,to_remove))
|
|
df.drop(df.index[df.carrier.isin(to_remove)],inplace=True)
|
|
|
|
|
|
def add_co2_tracking(n):
|
|
|
|
|
|
#minus sign because opposite to how fossil fuels used:
|
|
#CH4 burning puts CH4 down, atmosphere up
|
|
n.add("Carrier","co2",
|
|
co2_emissions=-1.)
|
|
|
|
#this tracks CO2 in the atmosphere
|
|
n.madd("Bus",
|
|
["co2 atmosphere"],
|
|
location="EU",
|
|
carrier="co2")
|
|
|
|
#NB: can also be negative
|
|
n.madd("Store",["co2 atmosphere"],
|
|
e_nom_extendable=True,
|
|
e_min_pu=-1,
|
|
carrier="co2",
|
|
bus="co2 atmosphere")
|
|
|
|
#this tracks CO2 stored, e.g. underground
|
|
n.madd("Bus",
|
|
["co2 stored"],
|
|
location="EU",
|
|
carrier="co2 stored")
|
|
|
|
#TODO move cost to data/costs.csv
|
|
#TODO move maximum somewhere more transparent
|
|
n.madd("Store",["co2 stored"],
|
|
e_nom_extendable = True,
|
|
e_nom_max=2e8,
|
|
capital_cost=20.,
|
|
carrier="co2 stored",
|
|
bus="co2 stored")
|
|
|
|
if options['co2_vent']:
|
|
n.madd("Link",["co2 vent"],
|
|
bus0="co2 stored",
|
|
bus1="co2 atmosphere",
|
|
carrier="co2 vent",
|
|
efficiency=1.,
|
|
p_nom_extendable=True)
|
|
|
|
if options['dac']:
|
|
#direct air capture consumes electricity to take CO2 from the air to the underground store
|
|
#TODO do with cost from Breyer - later use elec and heat and capital cost
|
|
n.madd("Link",["DAC"],
|
|
bus0="co2 atmosphere",
|
|
bus1="co2 stored",
|
|
carrier="DAC",
|
|
marginal_cost=75.,
|
|
efficiency=1.,
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['DAC','lifetime'])
|
|
|
|
|
|
def add_co2limit(n, Nyears=1.,limit=0.):
|
|
|
|
cts = pop_layout.ct.value_counts().index
|
|
|
|
co2_limit = co2_totals.loc[cts, "electricity"].sum()
|
|
|
|
if "T" in opts:
|
|
co2_limit += co2_totals.loc[cts, [i+ " non-elec" for i in ["rail","road"]]].sum().sum()
|
|
if "H" in opts:
|
|
co2_limit += co2_totals.loc[cts, [i+ " non-elec" for i in ["residential","services"]]].sum().sum()
|
|
if "I" in opts:
|
|
co2_limit += co2_totals.loc[cts, ["industrial non-elec","industrial processes",
|
|
"domestic aviation","international aviation",
|
|
"domestic navigation","international navigation"]].sum().sum()
|
|
|
|
co2_limit *= limit*Nyears
|
|
|
|
n.add("GlobalConstraint", "CO2Limit",
|
|
carrier_attribute="co2_emissions", sense="<=",
|
|
constant=co2_limit)
|
|
|
|
def add_emission_prices(n, emission_prices=None, exclude_co2=False):
|
|
assert False, "Needs to be fixed, adds NAN"
|
|
|
|
if emission_prices is None:
|
|
emission_prices = snakemake.config['costs']['emission_prices']
|
|
if exclude_co2: emission_prices.pop('co2')
|
|
ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') * n.carriers).sum(axis=1)
|
|
n.generators['marginal_cost'] += n.generators.carrier.map(ep)
|
|
n.storage_units['marginal_cost'] += n.storage_units.carrier.map(ep)
|
|
|
|
def set_line_s_max_pu(n):
|
|
# set n-1 security margin to 0.5 for 37 clusters and to 0.7 from 200 clusters
|
|
# 128 reproduces 98% of line volume in TWkm, but clustering distortions inside node
|
|
n_clusters = len(n.buses.index[n.buses.carrier == "AC"])
|
|
s_max_pu = np.clip(0.5 + 0.2 * (n_clusters - 37) / (200 - 37), 0.5, 0.7)
|
|
n.lines['s_max_pu'] = s_max_pu
|
|
|
|
dc_b = n.links.carrier == 'DC'
|
|
n.links.loc[dc_b, 'p_max_pu'] = snakemake.config['links']['p_max_pu']
|
|
n.links.loc[dc_b, 'p_min_pu'] = - snakemake.config['links']['p_max_pu']
|
|
|
|
def set_line_volume_limit(n, lv):
|
|
|
|
dc_b = n.links.carrier == 'DC'
|
|
|
|
if lv != "opt":
|
|
lv = float(lv)
|
|
|
|
# Either line_volume cap or cost
|
|
n.lines['capital_cost'] = 0.
|
|
n.links.loc[dc_b,'capital_cost'] = 0.
|
|
else:
|
|
n.lines['capital_cost'] = (n.lines['length'] *
|
|
costs.at['HVAC overhead', 'fixed'])
|
|
|
|
#add HVDC inverter post factor, to maintain consistency with LV limit
|
|
n.links.loc[dc_b, 'capital_cost'] = (n.links.loc[dc_b, 'length'] *
|
|
costs.at['HVDC overhead', 'fixed'])# +
|
|
#costs.at['HVDC inverter pair', 'fixed'])
|
|
|
|
|
|
|
|
if lv != 1.0:
|
|
lines_s_nom = n.lines.s_nom.where(
|
|
n.lines.type == '',
|
|
np.sqrt(3) * n.lines.num_parallel *
|
|
n.lines.type.map(n.line_types.i_nom) *
|
|
n.lines.bus0.map(n.buses.v_nom)
|
|
)
|
|
|
|
n.lines['s_nom_min'] = lines_s_nom
|
|
|
|
n.links.loc[dc_b,'p_nom_min'] = n.links['p_nom']
|
|
|
|
n.lines['s_nom_extendable'] = True
|
|
n.links.loc[dc_b,'p_nom_extendable'] = True
|
|
|
|
if lv != "opt":
|
|
n.line_volume_limit = lv * ((lines_s_nom * n.lines['length']).sum() +
|
|
n.links.loc[dc_b].eval('p_nom * length').sum())
|
|
|
|
return n
|
|
|
|
def average_every_nhours(n, offset):
|
|
logger.info('Resampling the network to {}'.format(offset))
|
|
m = n.copy(with_time=False)
|
|
|
|
#fix copying of network attributes
|
|
#copied from pypsa/io.py, should be in pypsa/components.py#Network.copy()
|
|
allowed_types = (float,int,bool) + string_types + tuple(np.typeDict.values())
|
|
attrs = dict((attr, getattr(n, attr))
|
|
for attr in dir(n)
|
|
if (not attr.startswith("__") and
|
|
isinstance(getattr(n,attr), allowed_types)))
|
|
for k,v in iteritems(attrs):
|
|
setattr(m,k,v)
|
|
|
|
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
|
|
m.set_snapshots(snapshot_weightings.index)
|
|
m.snapshot_weightings = snapshot_weightings
|
|
|
|
for c in n.iterate_components():
|
|
pnl = getattr(m, c.list_name+"_t")
|
|
for k, df in iteritems(c.pnl):
|
|
if not df.empty:
|
|
if c.list_name == "stores" and k == "e_max_pu":
|
|
pnl[k] = df.resample(offset).min()
|
|
elif c.list_name == "stores" and k == "e_min_pu":
|
|
pnl[k] = df.resample(offset).max()
|
|
else:
|
|
pnl[k] = df.resample(offset).mean()
|
|
|
|
return m
|
|
|
|
|
|
def generate_periodic_profiles(dt_index=pd.date_range("2011-01-01 00:00","2011-12-31 23:00",freq="H",tz="UTC"),
|
|
nodes=[],
|
|
weekly_profile=range(24*7)):
|
|
"""Give a 24*7 long list of weekly hourly profiles, generate this for
|
|
each country for the period dt_index, taking account of time
|
|
zones and Summer Time.
|
|
|
|
"""
|
|
|
|
|
|
weekly_profile = pd.Series(weekly_profile,range(24*7))
|
|
|
|
week_df = pd.DataFrame(index=dt_index,columns=nodes)
|
|
|
|
for ct in nodes:
|
|
week_df[ct] = [24*dt.weekday()+dt.hour for dt in dt_index.tz_convert(pytz.timezone(timezone_mappings[ct[:2]]))]
|
|
week_df[ct] = week_df[ct].map(weekly_profile)
|
|
|
|
return week_df
|
|
|
|
|
|
|
|
def shift_df(df,hours=1):
|
|
"""Works both on Series and DataFrame"""
|
|
df = df.copy()
|
|
df.values[:] = np.concatenate([df.values[-hours:],
|
|
df.values[:-hours]])
|
|
return df
|
|
|
|
def transport_degree_factor(temperature,deadband_lower=15,deadband_upper=20,
|
|
lower_degree_factor=0.5,
|
|
upper_degree_factor=1.6):
|
|
|
|
"""Work out how much energy demand in vehicles increases due to heating and cooling.
|
|
|
|
There is a deadband where there is no increase.
|
|
|
|
Degree factors are % increase in demand compared to no heating/cooling fuel consumption.
|
|
|
|
Returns per unit increase in demand for each place and time
|
|
"""
|
|
|
|
dd = temperature.copy()
|
|
|
|
dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.
|
|
|
|
dd[temperature < deadband_lower] = lower_degree_factor/100.*(deadband_lower-temperature[temperature < deadband_lower])
|
|
|
|
dd[temperature > deadband_upper] = upper_degree_factor/100.*(temperature[temperature > deadband_upper]-deadband_upper)
|
|
|
|
return dd
|
|
|
|
|
|
def prepare_data(network):
|
|
|
|
|
|
##############
|
|
#Heating
|
|
##############
|
|
|
|
|
|
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).T.to_pandas().reindex(index=network.snapshots)
|
|
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).T.to_pandas().reindex(index=network.snapshots)
|
|
|
|
solar_thermal = xr.open_dataarray(snakemake.input.solar_thermal_total).T.to_pandas().reindex(index=network.snapshots)
|
|
#1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
|
|
solar_thermal = options['solar_cf_correction'] * solar_thermal/1e3
|
|
|
|
energy_totals = pd.read_csv(snakemake.input.energy_totals_name,index_col=0)
|
|
|
|
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
|
|
nodal_energy_totals.index = pop_layout.index
|
|
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction,axis=0)
|
|
|
|
#copy forward the daily average heat demand into each hour, so it can be multipled by the intraday profile
|
|
daily_space_heat_demand = xr.open_dataarray(snakemake.input.heat_demand_total).T.to_pandas().reindex(index=network.snapshots, method="ffill")
|
|
|
|
intraday_profiles = pd.read_csv(snakemake.input.heat_profile,index_col=0)
|
|
|
|
sectors = ["residential","services"]
|
|
uses = ["water","space"]
|
|
|
|
heat_demand = {}
|
|
electric_heat_supply = {}
|
|
for sector in sectors:
|
|
for use in uses:
|
|
intraday_year_profile = generate_periodic_profiles(daily_space_heat_demand.index.tz_localize("UTC"),
|
|
nodes=daily_space_heat_demand.columns,
|
|
weekly_profile=(list(intraday_profiles["{} {} weekday".format(sector,use)])*5 + list(intraday_profiles["{} {} weekend".format(sector,use)])*2)).tz_localize(None)
|
|
|
|
if use == "space":
|
|
heat_demand_shape = daily_space_heat_demand*intraday_year_profile
|
|
factor = options['space_heating_fraction']
|
|
else:
|
|
heat_demand_shape = intraday_year_profile
|
|
factor = 1.
|
|
|
|
heat_demand["{} {}".format(sector,use)] = factor*(heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals["total {} {}".format(sector,use)])*1e6
|
|
electric_heat_supply["{} {}".format(sector,use)] = (heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals["electricity {} {}".format(sector,use)])*1e6
|
|
|
|
heat_demand = pd.concat(heat_demand,axis=1)
|
|
electric_heat_supply = pd.concat(electric_heat_supply,axis=1)
|
|
|
|
#subtract from electricity load since heat demand already in heat_demand
|
|
electric_nodes = n.loads.index[n.loads.carrier == "electricity"]
|
|
n.loads_t.p_set[electric_nodes] = n.loads_t.p_set[electric_nodes] - electric_heat_supply.groupby(level=1,axis=1).sum()[electric_nodes]
|
|
|
|
##############
|
|
#Transport
|
|
##############
|
|
|
|
|
|
## Get overall demand curve for all vehicles
|
|
|
|
traffic = pd.read_csv(snakemake.input.traffic_data + "KFZ__count",
|
|
skiprows=2)["count"]
|
|
|
|
#Generate profiles
|
|
transport_shape = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=traffic.values).tz_localize(None)
|
|
transport_shape = transport_shape/transport_shape.sum()
|
|
|
|
transport_data = pd.read_csv(snakemake.input.transport_name,
|
|
index_col=0)
|
|
|
|
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.)
|
|
nodal_transport_data.index = pop_layout.index
|
|
nodal_transport_data["number cars"] = pop_layout["fraction"]*nodal_transport_data["number cars"]
|
|
nodal_transport_data.loc[nodal_transport_data["average fuel efficiency"] == 0.,"average fuel efficiency"] = transport_data["average fuel efficiency"].mean()
|
|
|
|
|
|
#electric motors are more efficient, so alter transport demand
|
|
|
|
#kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
|
|
plug_to_wheels_eta = 0.20
|
|
battery_to_wheels_eta = plug_to_wheels_eta*0.9
|
|
|
|
efficiency_gain = nodal_transport_data["average fuel efficiency"]/battery_to_wheels_eta
|
|
|
|
|
|
#get heating demand for correction to demand time series
|
|
temperature = xr.open_dataarray(snakemake.input.temp_air_total).T.to_pandas()
|
|
|
|
#correction factors for vehicle heating
|
|
dd_ICE = transport_degree_factor(temperature,
|
|
options['transport_heating_deadband_lower'],
|
|
options['transport_heating_deadband_upper'],
|
|
options['ICE_lower_degree_factor'],
|
|
options['ICE_upper_degree_factor'])
|
|
|
|
dd_EV = transport_degree_factor(temperature,
|
|
options['transport_heating_deadband_lower'],
|
|
options['transport_heating_deadband_upper'],
|
|
options['EV_lower_degree_factor'],
|
|
options['EV_upper_degree_factor'])
|
|
|
|
#divide out the heating/cooling demand from ICE totals
|
|
ICE_correction = (transport_shape*(1+dd_ICE)).sum()/transport_shape.sum()
|
|
|
|
transport = (transport_shape.multiply(nodal_energy_totals["total road"] + nodal_energy_totals["total rail"]
|
|
- nodal_energy_totals["electricity rail"])*1e6*Nyears).divide(efficiency_gain*ICE_correction)
|
|
|
|
#multiply back in the heating/cooling demand for EVs
|
|
transport = transport.multiply(1+dd_EV)
|
|
|
|
|
|
## derive plugged-in availability for PKW's (cars)
|
|
|
|
traffic = pd.read_csv(snakemake.input.traffic_data + "Pkw__count",
|
|
skiprows=2)["count"]
|
|
|
|
avail_max = 0.95
|
|
|
|
avail_mean = 0.8
|
|
|
|
avail = avail_max - (avail_max - avail_mean)*(traffic - traffic.min())/(traffic.mean() - traffic.min())
|
|
|
|
avail_profile = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=avail.values).tz_localize(None)
|
|
|
|
dsm_week = np.zeros((24*7,))
|
|
|
|
dsm_week[(np.arange(0,7,1)*24+options['bev_dsm_restriction_time'])] = options['bev_dsm_restriction_value']
|
|
|
|
dsm_profile = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=dsm_week).tz_localize(None)
|
|
|
|
|
|
###############
|
|
#CO2
|
|
###############
|
|
|
|
#1e6 to convert Mt to tCO2
|
|
co2_totals = 1e6*pd.read_csv(snakemake.input.co2_totals_name,index_col=0)
|
|
|
|
|
|
|
|
return nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, co2_totals, nodal_transport_data
|
|
|
|
|
|
|
|
def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears, lifetime):
|
|
|
|
#set all asset costs and other parameters
|
|
costs = pd.read_csv(cost_file,index_col=list(range(2))).sort_index()
|
|
|
|
#correct units to MW and EUR
|
|
costs.loc[costs.unit.str.contains("/kW"),"value"]*=1e3
|
|
costs.loc[costs.unit.str.contains("USD"),"value"]*=USD_to_EUR
|
|
|
|
#min_count=1 is important to generate NaNs which are then filled by fillna
|
|
costs = costs.loc[:, "value"].unstack(level=1).groupby("technology").sum(min_count=1)
|
|
costs = costs.fillna({"CO2 intensity" : 0,
|
|
"FOM" : 0,
|
|
"VOM" : 0,
|
|
"discount rate" : discount_rate,
|
|
"efficiency" : 1,
|
|
"fuel" : 0,
|
|
"investment" : 0,
|
|
"lifetime" : lifetime
|
|
})
|
|
|
|
costs["fixed"] = [(annuity(v["lifetime"],v["discount rate"])+v["FOM"]/100.)*v["investment"]*Nyears for i,v in costs.iterrows()]
|
|
return costs
|
|
|
|
def add_generation(network):
|
|
print("adding electricity generation")
|
|
nodes = pop_layout.index
|
|
|
|
conventionals = [("OCGT","gas")]
|
|
|
|
for generator,carrier in [("OCGT","gas")]:
|
|
network.add("Carrier",
|
|
carrier)
|
|
|
|
network.madd("Bus",
|
|
["EU " + carrier],
|
|
location="EU",
|
|
carrier=carrier)
|
|
|
|
#use madd to get carrier inserted
|
|
network.madd("Store",
|
|
["EU " + carrier + " Store"],
|
|
bus=["EU " + carrier],
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier=carrier,
|
|
capital_cost=0.) #could correct to e.g. 0.2 EUR/kWh * annuity and O&M
|
|
|
|
network.add("Generator",
|
|
"EU fossil " + carrier,
|
|
bus="EU " + carrier,
|
|
p_nom_extendable=True,
|
|
carrier=carrier,
|
|
capital_cost=0.,
|
|
marginal_cost=costs.at[carrier,'fuel'])
|
|
|
|
|
|
network.madd("Link",
|
|
nodes + " " + generator,
|
|
bus0=["EU " + carrier]*len(nodes),
|
|
bus1=nodes,
|
|
bus2="co2 atmosphere",
|
|
marginal_cost=costs.at[generator,'efficiency']*costs.at[generator,'VOM'], #NB: VOM is per MWel
|
|
capital_cost=costs.at[generator,'efficiency']*costs.at[generator,'fixed'], #NB: fixed cost is per MWel
|
|
p_nom_extendable=True,
|
|
carrier=generator,
|
|
efficiency=costs.at[generator,'efficiency'],
|
|
efficiency2=costs.at[carrier,'CO2 intensity'],
|
|
lifetime=costs.at[generator,'lifetime'])
|
|
|
|
def add_wave(network, wave_cost_factor):
|
|
wave_fn = "data/WindWaveWEC_GLTB.xlsx"
|
|
|
|
locations = ["FirthForth","Hebrides"]
|
|
|
|
#in kW
|
|
capacity = pd.Series([750,1000,600],["Attenuator","F2HB","MultiPA"])
|
|
|
|
#in EUR/MW
|
|
costs = wave_cost_factor*pd.Series([2.5,2,1.5],["Attenuator","F2HB","MultiPA"])*1e6
|
|
|
|
sheets = {}
|
|
|
|
for l in locations:
|
|
sheets[l] = pd.read_excel(wave_fn,
|
|
index_col=0,skiprows=[0],parse_dates=True,
|
|
sheet_name=l)
|
|
|
|
to_drop = ["Vestas 3MW","Vestas 8MW"]
|
|
wave = pd.concat([sheets[l].drop(to_drop,axis=1).divide(capacity,axis=1) for l in locations],
|
|
keys=locations,
|
|
axis=1)
|
|
|
|
for wave_type in costs.index:
|
|
n.add("Generator",
|
|
"Hebrides "+wave_type,
|
|
bus="GB4 0",
|
|
p_nom_extendable=True,
|
|
carrier="wave",
|
|
capital_cost=(annuity(25,0.07)+0.03)*costs[wave_type],
|
|
p_max_pu=wave["Hebrides",wave_type])
|
|
|
|
|
|
|
|
def insert_electricity_distribution_grid(network):
|
|
print("Inserting electricity distribution grid with investment cost factor of",
|
|
snakemake.config["sector"]['electricity_distribution_grid_cost_factor'])
|
|
|
|
nodes = pop_layout.index
|
|
|
|
network.madd("Bus",
|
|
nodes+ " low voltage",
|
|
location=nodes,
|
|
carrier="low voltage")
|
|
|
|
network.madd("Link",
|
|
nodes + " electricity distribution grid",
|
|
bus0=nodes,
|
|
bus1=nodes + " low voltage",
|
|
p_nom_extendable=True,
|
|
p_min_pu=-1,
|
|
carrier="electricity distribution grid",
|
|
efficiency=1,
|
|
marginal_cost=0,
|
|
lifetime=costs.at['electricity distribution grid','lifetime'],
|
|
capital_cost=costs.at['electricity distribution grid','fixed']*snakemake.config["sector"]['electricity_distribution_grid_cost_factor'])
|
|
|
|
|
|
#this catches regular electricity load and "industry electricity"
|
|
loads = network.loads.index[network.loads.carrier.str.contains("electricity")]
|
|
network.loads.loc[loads,"bus"] += " low voltage"
|
|
|
|
bevs = network.links.index[network.links.carrier == "BEV charger"]
|
|
network.links.loc[bevs,"bus0"] += " low voltage"
|
|
|
|
v2gs = network.links.index[network.links.carrier == "V2G"]
|
|
network.links.loc[v2gs,"bus1"] += " low voltage"
|
|
|
|
hps = network.links.index[network.links.carrier.str.contains("heat pump")]
|
|
network.links.loc[hps,"bus0"] += " low voltage"
|
|
|
|
rh = network.links.index[network.links.carrier.str.contains("resistive heater")]
|
|
network.links.loc[rh, "bus0"] += " low voltage"
|
|
|
|
mchp = network.links.index[network.links.carrier.str.contains("micro gas")]
|
|
network.links.loc[mchp, "bus1"] += " low voltage"
|
|
|
|
#set existing solar to cost of utility cost rather the 50-50 rooftop-utility
|
|
solar = network.generators.index[network.generators.carrier == "solar"]
|
|
network.generators.loc[solar, "capital_cost"] = costs.at['solar-utility',
|
|
'fixed']
|
|
if snakemake.wildcards.clusters[-1:] == "m":
|
|
pop_solar = simplified_pop_layout.total.rename(index = lambda x: x + " solar")
|
|
else:
|
|
pop_solar = pop_layout.total.rename(index = lambda x: x + " solar")
|
|
|
|
# add max solar rooftop potential assuming 0.1 kW/m2 and 10 m2/person,
|
|
#i.e. 1 kW/person (population data is in thousands of people) so we get MW
|
|
potential = 0.1*10*pop_solar
|
|
|
|
network.madd("Generator",
|
|
solar,
|
|
suffix=" rooftop",
|
|
bus=network.generators.loc[solar, "bus"] + " low voltage",
|
|
carrier="solar rooftop",
|
|
p_nom_extendable=True,
|
|
p_nom_max=potential,
|
|
marginal_cost=network.generators.loc[solar, 'marginal_cost'],
|
|
capital_cost=costs.at['solar-rooftop', 'fixed'],
|
|
efficiency=network.generators.loc[solar, 'efficiency'],
|
|
p_max_pu=network.generators_t.p_max_pu[solar])
|
|
|
|
|
|
network.add("Carrier","home battery")
|
|
|
|
network.madd("Bus",
|
|
nodes + " home battery",
|
|
location=nodes,
|
|
carrier="home battery")
|
|
|
|
network.madd("Store",
|
|
nodes + " home battery",
|
|
bus=nodes + " home battery",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier="home battery",
|
|
capital_cost=costs.at['battery storage','fixed'],
|
|
lifetime=costs.at['battery storage','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " home battery charger",
|
|
bus0=nodes + " low voltage",
|
|
bus1=nodes + " home battery",
|
|
carrier="home battery charger",
|
|
efficiency=costs.at['battery inverter','efficiency']**0.5,
|
|
capital_cost=costs.at['battery inverter','fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " home battery discharger",
|
|
bus0=nodes + " home battery",
|
|
bus1=nodes + " low voltage",
|
|
carrier="home battery discharger",
|
|
efficiency=costs.at['battery inverter','efficiency']**0.5,
|
|
marginal_cost=options['marginal_cost_storage'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter','lifetime'])
|
|
|
|
|
|
def insert_gas_distribution_costs(network):
|
|
f_costs = options['gas_distribution_grid_cost_factor']
|
|
print("Inserting gas distribution grid with investment cost\
|
|
factor of", f_costs)
|
|
|
|
# gas boilers
|
|
gas_b = network.links[network.links.carrier.str.contains("gas boiler") &
|
|
(~network.links.carrier.str.contains("urban central"))].index
|
|
network.links.loc[gas_b, "capital_cost"] += costs.loc['electricity distribution grid']["fixed"] * f_costs
|
|
# micro CHPs
|
|
mchp = network.links.index[network.links.carrier.str.contains("micro gas")]
|
|
network.links.loc[mchp, "capital_cost"] += costs.loc['electricity distribution grid']["fixed"] * f_costs
|
|
|
|
def add_electricity_grid_connection(network):
|
|
|
|
carriers = ["onwind","solar"]
|
|
|
|
gens = network.generators.index[network.generators.carrier.isin(carriers)]
|
|
|
|
network.generators.loc[gens,"capital_cost"] += costs.at['electricity grid connection','fixed']
|
|
|
|
def add_storage(network):
|
|
print("adding electricity storage")
|
|
nodes = pop_layout.index
|
|
|
|
network.add("Carrier","H2")
|
|
|
|
|
|
network.madd("Bus",
|
|
nodes+ " H2",
|
|
location=nodes,
|
|
carrier="H2")
|
|
|
|
network.madd("Link",
|
|
nodes + " H2 Electrolysis",
|
|
bus1=nodes + " H2",
|
|
bus0=nodes,
|
|
p_nom_extendable=True,
|
|
carrier="H2 Electrolysis",
|
|
efficiency=costs.at["electrolysis","efficiency"],
|
|
capital_cost=costs.at["electrolysis","fixed"],
|
|
lifetime=costs.at['electrolysis','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " H2 Fuel Cell",
|
|
bus0=nodes + " H2",
|
|
bus1=nodes,
|
|
p_nom_extendable=True,
|
|
carrier ="H2 Fuel Cell",
|
|
efficiency=costs.at["fuel cell","efficiency"],
|
|
capital_cost=costs.at["fuel cell","fixed"]*costs.at["fuel cell","efficiency"], #NB: fixed cost is per MWel
|
|
lifetime=costs.at['fuel cell','lifetime'])
|
|
|
|
cavern_nodes = pd.DataFrame()
|
|
|
|
if options['hydrogen_underground_storage']:
|
|
h2_salt_cavern_potential = pd.read_csv(snakemake.input.h2_cavern,
|
|
index_col=0,squeeze=True)
|
|
h2_cavern_ct = h2_salt_cavern_potential[~h2_salt_cavern_potential.isna()]
|
|
cavern_nodes = pop_layout[pop_layout.ct.isin(h2_cavern_ct.index)]
|
|
|
|
h2_capital_cost = costs.at["hydrogen storage underground", "fixed"]
|
|
|
|
# assumptions: weight storage potential in a country by population
|
|
# TODO: fix with real geographic potentials
|
|
#convert TWh to MWh with 1e6
|
|
h2_pot = h2_cavern_ct.loc[cavern_nodes.ct]
|
|
h2_pot.index = cavern_nodes.index
|
|
h2_pot = h2_pot * cavern_nodes.fraction * 1e6
|
|
|
|
network.madd("Store",
|
|
cavern_nodes.index + " H2 Store",
|
|
bus=cavern_nodes.index + " H2",
|
|
e_nom_extendable=True,
|
|
e_nom_max=h2_pot.values,
|
|
e_cyclic=True,
|
|
carrier="H2 Store",
|
|
capital_cost=h2_capital_cost)
|
|
|
|
# hydrogen stored overground
|
|
h2_capital_cost = costs.at["hydrogen storage tank", "fixed"]
|
|
nodes_overground = nodes ^ cavern_nodes.index
|
|
|
|
network.madd("Store",
|
|
nodes_overground + " H2 Store",
|
|
bus=nodes_overground + " H2",
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier="H2 Store",
|
|
capital_cost=h2_capital_cost)
|
|
|
|
h2_links = pd.DataFrame(columns=["bus0","bus1","length"])
|
|
prefix = "H2 pipeline "
|
|
connector = " -> "
|
|
attrs = ["bus0","bus1","length"]
|
|
|
|
candidates = pd.concat([network.lines[attrs],network.links.loc[network.links.carrier == "DC",attrs]],
|
|
keys=["lines","links"])
|
|
|
|
for candidate in candidates.index:
|
|
buses = [candidates.at[candidate,"bus0"],candidates.at[candidate,"bus1"]]
|
|
buses.sort()
|
|
name = prefix + buses[0] + connector + buses[1]
|
|
if name not in h2_links.index:
|
|
h2_links.at[name,"bus0"] = buses[0]
|
|
h2_links.at[name,"bus1"] = buses[1]
|
|
h2_links.at[name,"length"] = candidates.at[candidate,"length"]
|
|
|
|
#TODO Add efficiency losses
|
|
network.madd("Link",
|
|
h2_links.index,
|
|
bus0=h2_links.bus0.values + " H2",
|
|
bus1=h2_links.bus1.values + " H2",
|
|
p_min_pu=-1,
|
|
p_nom_extendable=True,
|
|
length=h2_links.length.values,
|
|
capital_cost=costs.at['H2 pipeline','fixed']*h2_links.length.values,
|
|
carrier="H2 pipeline",
|
|
lifetime=costs.at['H2 pipeline','lifetime'])
|
|
|
|
|
|
network.add("Carrier","battery")
|
|
|
|
network.madd("Bus",
|
|
nodes + " battery",
|
|
location=nodes,
|
|
carrier="battery")
|
|
|
|
network.madd("Store",
|
|
nodes + " battery",
|
|
bus=nodes + " battery",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier="battery",
|
|
capital_cost=costs.at['battery storage','fixed'],
|
|
lifetime=costs.at['battery storage','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " battery charger",
|
|
bus0=nodes,
|
|
bus1=nodes + " battery",
|
|
carrier="battery charger",
|
|
efficiency=costs.at['battery inverter','efficiency']**0.5,
|
|
capital_cost=costs.at['battery inverter','fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " battery discharger",
|
|
bus0=nodes + " battery",
|
|
bus1=nodes,
|
|
carrier="battery discharger",
|
|
efficiency=costs.at['battery inverter','efficiency']**0.5,
|
|
marginal_cost=options['marginal_cost_storage'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter','lifetime'])
|
|
|
|
|
|
if options['methanation']:
|
|
network.madd("Link",
|
|
nodes + " Sabatier",
|
|
bus0=nodes+" H2",
|
|
bus1=["EU gas"]*len(nodes),
|
|
bus2="co2 stored",
|
|
p_nom_extendable=True,
|
|
carrier="Sabatier",
|
|
efficiency=costs.at["methanation","efficiency"],
|
|
efficiency2=-costs.at["methanation","efficiency"]*costs.at['gas','CO2 intensity'],
|
|
capital_cost=costs.at["methanation","fixed"],
|
|
lifetime=costs.at['methanation','lifetime'])
|
|
|
|
if options['helmeth']:
|
|
network.madd("Link",
|
|
nodes + " helmeth",
|
|
bus0=nodes,
|
|
bus1=["EU gas"]*len(nodes),
|
|
bus2="co2 stored",
|
|
carrier="helmeth",
|
|
p_nom_extendable=True,
|
|
efficiency=costs.at["helmeth","efficiency"],
|
|
efficiency2=-costs.at["helmeth","efficiency"]*costs.at['gas','CO2 intensity'],
|
|
capital_cost=costs.at["helmeth","fixed"],
|
|
lifetime=costs.at['helmeth','lifetime'])
|
|
|
|
|
|
if options['SMR']:
|
|
network.madd("Link",
|
|
nodes + " SMR CCS",
|
|
bus0=["EU gas"]*len(nodes),
|
|
bus1=nodes+" H2",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
p_nom_extendable=True,
|
|
carrier="SMR CCS",
|
|
efficiency=costs.at["SMR CCS","efficiency"],
|
|
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
|
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
|
capital_cost=costs.at["SMR CCS","fixed"],
|
|
lifetime=costs.at['SMR CCS','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " SMR",
|
|
bus0=["EU gas"]*len(nodes),
|
|
bus1=nodes+" H2",
|
|
bus2="co2 atmosphere",
|
|
p_nom_extendable=True,
|
|
carrier="SMR",
|
|
efficiency=costs.at["SMR","efficiency"],
|
|
efficiency2=costs.at['gas','CO2 intensity'],
|
|
capital_cost=costs.at["SMR","fixed"],
|
|
lifetime=costs.at['SMR','lifetime'])
|
|
|
|
|
|
def add_land_transport(network):
|
|
|
|
print("adding land transport")
|
|
|
|
fuel_cell_share = get_parameter(options["land_transport_fuel_cell_share"])
|
|
electric_share = get_parameter(options["land_transport_electric_share"])
|
|
fossil_share = 1 - fuel_cell_share - electric_share
|
|
|
|
print("shares of FCEV, EV and ICEV are",
|
|
fuel_cell_share,
|
|
electric_share,
|
|
fossil_share)
|
|
|
|
if fossil_share < 0:
|
|
print("Error, more FCEV and EV share than 1.")
|
|
sys.exit()
|
|
|
|
nodes = pop_layout.index
|
|
|
|
|
|
if electric_share > 0:
|
|
|
|
network.add("Carrier","Li ion")
|
|
|
|
network.madd("Bus",
|
|
nodes,
|
|
location=nodes,
|
|
suffix=" EV battery",
|
|
carrier="Li ion")
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" land transport EV",
|
|
bus=nodes + " EV battery",
|
|
carrier="land transport EV",
|
|
p_set=electric_share*(transport[nodes]+shift_df(transport[nodes],1)+shift_df(transport[nodes],2))/3.)
|
|
|
|
p_nom = nodal_transport_data["number cars"]*0.011*electric_share #3-phase charger with 11 kW * x% of time grid-connected
|
|
|
|
network.madd("Link",
|
|
nodes,
|
|
suffix= " BEV charger",
|
|
bus0=nodes,
|
|
bus1=nodes + " EV battery",
|
|
p_nom=p_nom,
|
|
carrier="BEV charger",
|
|
p_max_pu=avail_profile[nodes],
|
|
efficiency=0.9, #[B]
|
|
#These were set non-zero to find LU infeasibility when availability = 0.25
|
|
#p_nom_extendable=True,
|
|
#p_nom_min=p_nom,
|
|
#capital_cost=1e6, #i.e. so high it only gets built where necessary
|
|
)
|
|
|
|
if options["v2g"]:
|
|
|
|
network.madd("Link",
|
|
nodes,
|
|
suffix=" V2G",
|
|
bus1=nodes,
|
|
bus0=nodes + " EV battery",
|
|
p_nom=p_nom,
|
|
carrier="V2G",
|
|
p_max_pu=avail_profile[nodes],
|
|
efficiency=0.9) #[B]
|
|
|
|
|
|
|
|
if options["bev_dsm"]:
|
|
|
|
network.madd("Store",
|
|
nodes,
|
|
suffix=" battery storage",
|
|
bus=nodes + " EV battery",
|
|
carrier="battery storage",
|
|
e_cyclic=True,
|
|
e_nom=nodal_transport_data["number cars"]*0.05*options["bev_availability"]*electric_share, #50 kWh battery http://www.zeit.de/mobilitaet/2014-10/auto-fahrzeug-bestand
|
|
e_max_pu=1,
|
|
e_min_pu=dsm_profile[nodes])
|
|
|
|
|
|
if fuel_cell_share > 0:
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" land transport fuel cell",
|
|
bus=nodes + " H2",
|
|
carrier="land transport fuel cell",
|
|
p_set=fuel_cell_share/options['transport_fuel_cell_efficiency']*transport[nodes])
|
|
|
|
|
|
if fossil_share > 0:
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" land transport fossil",
|
|
bus="Fischer-Tropsch",
|
|
carrier="land transport fossil",
|
|
p_set=fossil_share/options['transport_internal_combustion_efficiency']*transport[nodes])
|
|
|
|
|
|
|
|
def add_heat(network):
|
|
|
|
print("adding heat")
|
|
|
|
sectors = ["residential", "services"]
|
|
|
|
nodes = create_nodes_for_heat_sector()
|
|
|
|
#NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
|
|
|
|
urban_fraction = options['central_fraction']*pop_layout["urban"]/(pop_layout[["urban","rural"]].sum(axis=1))
|
|
|
|
# building retrofitting, exogenously reduce space heat demand
|
|
if options["retrofitting"]["retro_exogen"]:
|
|
dE = options["retrofitting"]["dE"]
|
|
if snakemake.config["foresight"]=='myopic':
|
|
year = int(snakemake.wildcards.planning_horizons[-4:])
|
|
dE = dE[snakemake.config["scenario"]["planning_horizons"].index(year)]
|
|
print("retrofitting exogenously, assumed space heat reduction of ",
|
|
dE)
|
|
for sector in sectors:
|
|
heat_demand[sector + " space"] = heat_demand[sector + " space"].apply(lambda x: retro_exogen(x, dE))
|
|
|
|
heat_systems = ["residential rural", "services rural",
|
|
"residential urban decentral","services urban decentral",
|
|
"urban central"]
|
|
for name in heat_systems:
|
|
|
|
name_type = "central" if name == "urban central" else "decentral"
|
|
|
|
network.add("Carrier",name + " heat")
|
|
|
|
network.madd("Bus",
|
|
nodes[name] + " " + name + " heat",
|
|
location=nodes[name],
|
|
carrier=name + " heat")
|
|
|
|
## Add heat load
|
|
|
|
for sector in sectors:
|
|
if "rural" in name:
|
|
factor = 1-urban_fraction[nodes[name]]
|
|
elif "urban" in name:
|
|
factor = urban_fraction[nodes[name]]
|
|
else:
|
|
factor = None
|
|
if sector in name:
|
|
heat_load = heat_demand[[sector + " water",sector + " space"]].groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor)
|
|
|
|
|
|
if name == "urban central":
|
|
heat_load = heat_demand.groupby(level=1,axis=1).sum()[nodes[name]].multiply(urban_fraction[nodes[name]]*(1+options['district_heating_loss']))
|
|
|
|
network.madd("Load",
|
|
nodes[name],
|
|
suffix=" " + name + " heat",
|
|
bus=nodes[name] + " " + name + " heat",
|
|
carrier=name + " heat",
|
|
p_set=heat_load)
|
|
|
|
|
|
## Add heat pumps
|
|
|
|
heat_pump_type = "air" if "urban" in name else "ground"
|
|
|
|
costs_name = "{} {}-sourced heat pump".format(name_type,heat_pump_type)
|
|
cop = {"air" : ashp_cop, "ground" : gshp_cop}
|
|
efficiency = cop[heat_pump_type][nodes[name]] if options["time_dep_hp_cop"] else costs.at[costs_name,'efficiency']
|
|
|
|
network.madd("Link",
|
|
nodes[name],
|
|
suffix=" {} {} heat pump".format(name,heat_pump_type),
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
carrier="{} {} heat pump".format(name,heat_pump_type),
|
|
efficiency=efficiency,
|
|
capital_cost=costs.at[costs_name,'efficiency']*costs.at[costs_name,'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at[costs_name,'lifetime'])
|
|
|
|
|
|
if options["tes"]:
|
|
|
|
network.add("Carrier",name + " water tanks")
|
|
|
|
network.madd("Bus",
|
|
nodes[name] + " " + name + " water tanks",
|
|
location=nodes[name],
|
|
carrier=name + " water tanks")
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " " + name + " water tanks charger",
|
|
bus0=nodes[name] + " " + name + " heat",
|
|
bus1=nodes[name] + " " + name + " water tanks",
|
|
efficiency=costs.at['water tank charger','efficiency'],
|
|
carrier=name + " water tanks charger",
|
|
p_nom_extendable=True)
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " " + name + " water tanks discharger",
|
|
bus0=nodes[name] + " " + name + " water tanks",
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
carrier=name + " water tanks discharger",
|
|
efficiency=costs.at['water tank discharger','efficiency'],
|
|
p_nom_extendable=True)
|
|
|
|
# [HP] 180 day time constant for centralised, 3 day for decentralised
|
|
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
|
|
|
|
network.madd("Store",
|
|
nodes[name] + " " + name + " water tanks",
|
|
bus=nodes[name] + " " + name + " water tanks",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier=name + " water tanks",
|
|
standing_loss=1-np.exp(-1/(24.*tes_time_constant_days)),
|
|
capital_cost=costs.at[name_type + ' water tank storage','fixed']/(1.17e-3*40), #conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
|
|
lifetime=costs.at[name_type + ' water tank storage','lifetime'])
|
|
|
|
if options["boilers"]:
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " " + name + " resistive heater",
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
carrier=name + " resistive heater",
|
|
efficiency=costs.at[name_type + ' resistive heater','efficiency'],
|
|
capital_cost=costs.at[name_type + ' resistive heater','efficiency']*costs.at[name_type + ' resistive heater','fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at[name_type + ' resistive heater','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " " + name + " gas boiler",
|
|
p_nom_extendable=True,
|
|
bus0=["EU gas"]*len(nodes[name]),
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=name + " gas boiler",
|
|
efficiency=costs.at[name_type + ' gas boiler','efficiency'],
|
|
efficiency2=costs.at['gas','CO2 intensity'],
|
|
capital_cost=costs.at[name_type + ' gas boiler','efficiency']*costs.at[name_type + ' gas boiler','fixed'],
|
|
lifetime=costs.at[name_type + ' gas boiler','lifetime'])
|
|
|
|
|
|
|
|
if options["solar_thermal"]:
|
|
|
|
network.add("Carrier",name + " solar thermal")
|
|
|
|
network.madd("Generator",
|
|
nodes[name],
|
|
suffix=" " + name + " solar thermal collector",
|
|
bus=nodes[name] + " " + name + " heat",
|
|
carrier=name + " solar thermal",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at[name_type + ' solar thermal','fixed'],
|
|
p_max_pu=solar_thermal[nodes[name]],
|
|
lifetime=costs.at[name_type + ' solar thermal','lifetime'])
|
|
|
|
|
|
if options["chp"]:
|
|
|
|
if name == "urban central":
|
|
#add gas CHP; biomass CHP is added in biomass section
|
|
network.madd("Link",
|
|
nodes[name] + " urban central gas CHP electric",
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2="co2 atmosphere",
|
|
carrier="urban central gas CHP electric",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central gas CHP','fixed']*costs.at['central gas CHP','efficiency'],
|
|
marginal_cost=costs.at['central gas CHP','VOM'],
|
|
efficiency=costs.at['central gas CHP','efficiency'],
|
|
efficiency2=costs.at['gas','CO2 intensity'],
|
|
c_b=costs.at['central gas CHP','c_b'],
|
|
c_v=costs.at['central gas CHP','c_v'],
|
|
p_nom_ratio=costs.at['central gas CHP','p_nom_ratio'],
|
|
lifetime=costs.at['central gas CHP','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " urban central gas CHP heat",
|
|
bus0="EU gas",
|
|
bus1=nodes[name] + " urban central heat",
|
|
bus2="co2 atmosphere",
|
|
carrier="urban central gas CHP heat",
|
|
p_nom_extendable=True,
|
|
marginal_cost=costs.at['central gas CHP','VOM'],
|
|
efficiency=costs.at['central gas CHP','efficiency']/costs.at['central gas CHP','c_v'],
|
|
efficiency2=costs.at['gas','CO2 intensity'],
|
|
lifetime=costs.at['central gas CHP','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " urban central gas CHP CCS electric",
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="urban central gas CHP CCS electric",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central gas CHP CCS','fixed']*costs.at['central gas CHP CCS','efficiency'],
|
|
marginal_cost=costs.at['central gas CHP CCS','VOM'],
|
|
efficiency=costs.at['central gas CHP CCS','efficiency'],
|
|
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
|
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
|
c_b=costs.at['central gas CHP CCS','c_b'],
|
|
c_v=costs.at['central gas CHP CCS','c_v'],
|
|
p_nom_ratio=costs.at['central gas CHP CCS','p_nom_ratio'],
|
|
lifetime=costs.at['central gas CHP CCS','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes[name] + " urban central gas CHP CCS heat",
|
|
bus0="EU gas",
|
|
bus1=nodes[name] + " urban central heat",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="urban central gas CHP CCS heat",
|
|
p_nom_extendable=True,
|
|
marginal_cost=costs.at['central gas CHP CCS','VOM'],
|
|
efficiency=costs.at['central gas CHP CCS','efficiency']/costs.at['central gas CHP CCS','c_v'],
|
|
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
|
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
|
lifetime=costs.at['central gas CHP CCS','lifetime'])
|
|
|
|
else:
|
|
if options["micro_chp"]:
|
|
network.madd("Link",
|
|
nodes[name] + " " + name + " micro gas CHP",
|
|
p_nom_extendable=True,
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2=nodes[name] + " " + name + " heat",
|
|
bus3="co2 atmosphere",
|
|
carrier=name + " micro gas CHP",
|
|
efficiency=costs.at['micro CHP','efficiency'],
|
|
efficiency2=costs.at['micro CHP','efficiency-heat'],
|
|
efficiency3=costs.at['gas','CO2 intensity'],
|
|
capital_cost=costs.at['micro CHP','fixed'],
|
|
lifetime=costs.at['micro CHP','lifetime'])
|
|
|
|
|
|
if options['retrofitting']['retro_endogen']:
|
|
|
|
print("adding retrofitting endogenously")
|
|
|
|
# resample heat demand temporal 'heat_demand_r' depending on in config
|
|
# specified temporal resolution, to not overestimate retrofitting
|
|
hours = list(filter(re.compile(r'^\d+h$', re.IGNORECASE).search, opts))
|
|
if len(hours)==0:
|
|
hours = [n.snapshots[1] - n.snapshots[0]]
|
|
heat_demand_r = heat_demand.resample(hours[0]).mean()
|
|
|
|
# retrofitting data 'retro_data' with 'costs' [EUR/m^2] and heat
|
|
# demand 'dE' [per unit of original heat demand] for each country and
|
|
# different retrofitting strengths [additional insulation thickness in m]
|
|
retro_data = pd.read_csv(snakemake.input.retro_cost_energy,
|
|
index_col=[0, 1], skipinitialspace=True,
|
|
header=[0, 1])
|
|
# heated floor area [10^6 * m^2] per country
|
|
floor_area = pd.read_csv(snakemake.input.floor_area, index_col=[0, 1])
|
|
|
|
network.add("Carrier", "retrofitting")
|
|
|
|
# share of space heat demand 'w_space' of total heat demand
|
|
w_space = {}
|
|
for sector in sectors:
|
|
w_space[sector] = heat_demand_r[sector + " space"] / \
|
|
(heat_demand_r[sector + " space"] + heat_demand_r[sector + " water"])
|
|
w_space["tot"] = ((heat_demand_r["services space"] +
|
|
heat_demand_r["residential space"]) /
|
|
heat_demand_r.groupby(level=[1], axis=1).sum())
|
|
|
|
|
|
for name in network.loads[network.loads.carrier.isin([x + " heat" for x in heat_systems])].index:
|
|
|
|
node = network.buses.loc[name, "location"]
|
|
ct = pop_layout.loc[node, "ct"]
|
|
|
|
# weighting 'f' depending on the size of the population at the node
|
|
f = urban_fraction[node] if "urban" in name else (1-urban_fraction[node])
|
|
if f == 0:
|
|
continue
|
|
# get sector name ("residential"/"services"/or both "tot" for urban central)
|
|
sec = [x if x in name else "tot" for x in sectors][0]
|
|
|
|
# get floor aread at node and region (urban/rural) in m^2
|
|
floor_area_node = ((pop_layout.loc[node].fraction
|
|
* floor_area.loc[ct, "value"] * 10**6).loc[sec] * f)
|
|
# total heat demand at node [MWh]
|
|
demand = (network.loads_t.p_set[name].resample(hours[0])
|
|
.mean())
|
|
|
|
# space heat demand at node [MWh]
|
|
space_heat_demand = demand * w_space[sec][node]
|
|
# normed time profile of space heat demand 'space_pu' (values between 0-1),
|
|
# p_max_pu/p_min_pu of retrofitting generators
|
|
space_pu = (space_heat_demand / space_heat_demand.max()).to_frame(name=node)
|
|
|
|
# minimum heat demand 'dE' after retrofitting in units of original heat demand (values between 0-1)
|
|
dE = retro_data.loc[(ct, sec), ("dE")]
|
|
# get addtional energy savings 'dE_diff' between the different retrofitting strengths/generators at one node
|
|
dE_diff = abs(dE.diff()).fillna(1-dE.iloc[0])
|
|
# convert costs Euro/m^2 -> Euro/MWh
|
|
capital_cost = retro_data.loc[(ct, sec), ("cost")] * floor_area_node / \
|
|
((1 - dE) * space_heat_demand.max())
|
|
# number of possible retrofitting measures 'strengths' (set in list at config.yaml 'l_strength')
|
|
# given in additional insulation thickness [m]
|
|
# for each measure, a retrofitting generator is added at the node
|
|
strengths = retro_data.columns.levels[1]
|
|
|
|
# check that ambitious retrofitting has higher costs per MWh than moderate retrofitting
|
|
if (capital_cost.diff() < 0).sum():
|
|
print(
|
|
"warning, costs are not linear for ", ct, " ", sec)
|
|
s = capital_cost[(capital_cost.diff() < 0)].index
|
|
strengths = strengths.drop(s)
|
|
|
|
# reindex normed time profile of space heat demand back to hourly resolution
|
|
space_pu = (space_pu.reindex(index=heat_demand.index)
|
|
.fillna(method="ffill"))
|
|
|
|
# add for each retrofitting strength a generator with heat generation profile following the profile of the heat demand
|
|
for strength in strengths:
|
|
network.madd('Generator',
|
|
[node],
|
|
suffix=' retrofitting ' + strength + " " + name[6::],
|
|
bus=name,
|
|
carrier="retrofitting",
|
|
p_nom_extendable=True,
|
|
p_nom_max=dE_diff[strength] * space_heat_demand.max(), # maximum energy savings for this renovation strength
|
|
p_max_pu=space_pu,
|
|
p_min_pu=space_pu,
|
|
country=ct,
|
|
capital_cost=capital_cost[strength] * options['retrofitting']['cost_factor'])
|
|
|
|
|
|
|
|
def create_nodes_for_heat_sector():
|
|
sectors = ["residential", "services"]
|
|
# stores the different groups of nodes
|
|
nodes = {}
|
|
# rural are areas with low heating density and individual heating
|
|
# urban are areas with high heating density
|
|
# urban can be split into district heating (central) and individual heating (decentral)
|
|
for sector in sectors:
|
|
nodes[sector + " rural"] = pop_layout.index
|
|
|
|
if options["central"]:
|
|
urban_decentral_ct = pd.Index(["ES", "GR", "PT", "IT", "BG"])
|
|
nodes[sector + " urban decentral"] = pop_layout.index[pop_layout.ct.isin(urban_decentral_ct)]
|
|
else:
|
|
nodes[sector + " urban decentral"] = pop_layout.index
|
|
# for central nodes, residential and services are aggregated
|
|
nodes["urban central"] = pop_layout.index ^ nodes["residential urban decentral"]
|
|
return nodes
|
|
|
|
|
|
def add_biomass(network):
|
|
|
|
print("adding biomass")
|
|
|
|
nodes = pop_layout.index
|
|
|
|
#biomass distributed at country level - i.e. transport within country allowed
|
|
cts = pop_layout.ct.value_counts().index
|
|
|
|
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials,
|
|
index_col=0)
|
|
|
|
network.add("Carrier","biogas")
|
|
network.add("Carrier","solid biomass")
|
|
|
|
network.madd("Bus",
|
|
["EU biogas"],
|
|
location="EU",
|
|
carrier="biogas")
|
|
|
|
network.madd("Bus",
|
|
["EU solid biomass"],
|
|
location="EU",
|
|
carrier="solid biomass")
|
|
|
|
network.madd("Store",
|
|
["EU biogas"],
|
|
bus="EU biogas",
|
|
carrier="biogas",
|
|
e_nom=biomass_potentials.loc[cts,"biogas"].sum(),
|
|
marginal_cost=costs.at['biogas','fuel'],
|
|
e_initial=biomass_potentials.loc[cts,"biogas"].sum())
|
|
|
|
network.madd("Store",
|
|
["EU solid biomass"],
|
|
bus="EU solid biomass",
|
|
carrier="solid biomass",
|
|
e_nom=biomass_potentials.loc[cts,"solid biomass"].sum(),
|
|
marginal_cost=costs.at['solid biomass','fuel'],
|
|
e_initial=biomass_potentials.loc[cts,"solid biomass"].sum())
|
|
|
|
network.madd("Link",
|
|
["biogas to gas"],
|
|
bus0="EU biogas",
|
|
bus1="EU gas",
|
|
bus2="co2 atmosphere",
|
|
carrier="biogas to gas",
|
|
efficiency2=-costs.at['gas','CO2 intensity'],
|
|
p_nom_extendable=True)
|
|
|
|
|
|
#AC buses with district heating
|
|
urban_central = network.buses.index[network.buses.carrier == "urban central heat"]
|
|
if not urban_central.empty and options["chp"]:
|
|
urban_central = urban_central.str[:-len(" urban central heat")]
|
|
|
|
network.madd("Link",
|
|
urban_central + " urban central solid biomass CHP electric",
|
|
bus0="EU solid biomass",
|
|
bus1=urban_central,
|
|
carrier="urban central solid biomass CHP electric",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central solid biomass CHP','fixed']*costs.at['central solid biomass CHP','efficiency'],
|
|
marginal_cost=costs.at['central solid biomass CHP','VOM'],
|
|
efficiency=costs.at['central solid biomass CHP','efficiency'],
|
|
c_b=costs.at['central solid biomass CHP','c_b'],
|
|
c_v=costs.at['central solid biomass CHP','c_v'],
|
|
p_nom_ratio=costs.at['central solid biomass CHP','p_nom_ratio'],
|
|
lifetime=costs.at['central solid biomass CHP','lifetime'])
|
|
|
|
|
|
network.madd("Link",
|
|
urban_central + " urban central solid biomass CHP heat",
|
|
bus0="EU solid biomass",
|
|
bus1=urban_central + " urban central heat",
|
|
carrier="urban central solid biomass CHP heat",
|
|
p_nom_extendable=True,
|
|
marginal_cost=costs.at['central solid biomass CHP','VOM'],
|
|
efficiency=costs.at['central solid biomass CHP','efficiency']/costs.at['central solid biomass CHP','c_v'],
|
|
lifetime=costs.at['central solid biomass CHP','lifetime'])
|
|
|
|
network.madd("Link",
|
|
urban_central + " urban central solid biomass CHP CCS electric",
|
|
bus0="EU solid biomass",
|
|
bus1=urban_central,
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="urban central solid biomass CHP CCS electric",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central solid biomass CHP CCS','fixed']*costs.at['central solid biomass CHP CCS','efficiency'],
|
|
marginal_cost=costs.at['central solid biomass CHP CCS','VOM'],
|
|
efficiency=costs.at['central solid biomass CHP CCS','efficiency'],
|
|
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
efficiency3=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
c_b=costs.at['central solid biomass CHP','c_b'],
|
|
c_v=costs.at['central solid biomass CHP','c_v'],
|
|
p_nom_ratio=costs.at['central solid biomass CHP','p_nom_ratio'],
|
|
lifetime=costs.at['central solid biomass CHP CCS','lifetime'])
|
|
|
|
network.madd("Link",
|
|
urban_central + " urban central solid biomass CHP CCS heat",
|
|
bus0="EU solid biomass",
|
|
bus1=urban_central + " urban central heat",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="urban central solid biomass CHP CCS heat",
|
|
p_nom_extendable=True,
|
|
marginal_cost=costs.at['central solid biomass CHP CCS','VOM'],
|
|
efficiency=costs.at['central solid biomass CHP CCS','efficiency']/costs.at['central solid biomass CHP CCS','c_v'],
|
|
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
efficiency3=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
lifetime=costs.at['central solid biomass CHP CCS','lifetime'])
|
|
|
|
|
|
def add_industry(network):
|
|
|
|
print("adding industrial demand")
|
|
|
|
nodes = pop_layout.index
|
|
|
|
#1e6 to convert TWh to MWh
|
|
industrial_demand = 1e6*pd.read_csv(snakemake.input.industrial_demand,
|
|
index_col=0)
|
|
|
|
solid_biomass_by_country = industrial_demand["solid biomass"].groupby(pop_layout.ct).sum()
|
|
countries = solid_biomass_by_country.index
|
|
|
|
network.madd("Bus",
|
|
["solid biomass for industry"],
|
|
location="EU",
|
|
carrier="solid biomass for industry")
|
|
|
|
network.madd("Load",
|
|
["solid biomass for industry"],
|
|
bus="solid biomass for industry",
|
|
carrier="solid biomass for industry",
|
|
p_set=solid_biomass_by_country.sum()/8760.)
|
|
|
|
network.madd("Link",
|
|
["solid biomass for industry"],
|
|
bus0="EU solid biomass",
|
|
bus1="solid biomass for industry",
|
|
carrier="solid biomass for industry",
|
|
p_nom_extendable=True,
|
|
efficiency=1.)
|
|
|
|
network.madd("Link",
|
|
["solid biomass for industry CCS"],
|
|
bus0="EU solid biomass",
|
|
bus1="solid biomass for industry",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="solid biomass for industry CCS",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["industry CCS","fixed"]*costs.at['solid biomass','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
|
efficiency=0.9,
|
|
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
efficiency3=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
|
lifetime=costs.at['industry CCS','lifetime'])
|
|
|
|
|
|
network.madd("Bus",
|
|
["gas for industry"],
|
|
location="EU",
|
|
carrier="gas for industry")
|
|
|
|
network.madd("Load",
|
|
["gas for industry"],
|
|
bus="gas for industry",
|
|
carrier="gas for industry",
|
|
p_set=industrial_demand.loc[nodes,"methane"].sum()/8760.)
|
|
|
|
network.madd("Link",
|
|
["gas for industry"],
|
|
bus0="EU gas",
|
|
bus1="gas for industry",
|
|
bus2="co2 atmosphere",
|
|
carrier="gas for industry",
|
|
p_nom_extendable=True,
|
|
efficiency=1.,
|
|
efficiency2=costs.at['gas','CO2 intensity'])
|
|
|
|
network.madd("Link",
|
|
["gas for industry CCS"],
|
|
bus0="EU gas",
|
|
bus1="gas for industry",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="gas for industry CCS",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["industry CCS","fixed"]*costs.at['gas','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
|
efficiency=0.9,
|
|
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
|
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
|
lifetime=costs.at['industry CCS','lifetime'])
|
|
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" H2 for industry",
|
|
bus=nodes + " H2",
|
|
carrier="H2 for industry",
|
|
p_set=industrial_demand.loc[nodes,"hydrogen"]/8760.)
|
|
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" H2 for shipping",
|
|
bus=nodes + " H2",
|
|
carrier="H2 for shipping",
|
|
p_set = nodal_energy_totals.loc[nodes,["total international navigation","total domestic navigation"]].sum(axis=1)*1e6*options['shipping_average_efficiency']/costs.at["fuel cell","efficiency"]/8760.)
|
|
|
|
network.madd("Bus",
|
|
["Fischer-Tropsch"],
|
|
location="EU",
|
|
carrier="Fischer-Tropsch")
|
|
|
|
#use madd to get carrier inserted
|
|
network.madd("Store",
|
|
["Fischer-Tropsch Store"],
|
|
bus="Fischer-Tropsch",
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier="Fischer-Tropsch",
|
|
capital_cost=0.) #could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
|
|
|
network.add("Generator",
|
|
"fossil oil",
|
|
bus="Fischer-Tropsch",
|
|
p_nom_extendable=True,
|
|
carrier="oil",
|
|
capital_cost=0.,
|
|
marginal_cost=costs.at["oil",'fuel'])
|
|
|
|
if options["oil_boilers"]:
|
|
|
|
nodes_heat = create_nodes_for_heat_sector()
|
|
|
|
for name in ["residential rural", "services rural", "residential urban decentral", "services urban decentral"]:
|
|
network.madd("Link",
|
|
nodes_heat[name] + " " + name + " oil boiler",
|
|
p_nom_extendable=True,
|
|
bus0=["Fischer-Tropsch"] * len(nodes_heat[name]),
|
|
bus1=nodes_heat[name] + " " + name + " heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=name + " oil boiler",
|
|
efficiency=costs.at['decentral oil boiler', 'efficiency'],
|
|
efficiency2=costs.at['oil', 'CO2 intensity'],
|
|
capital_cost=costs.at['decentral oil boiler', 'efficiency'] * costs.at[
|
|
'decentral oil boiler', 'fixed'],
|
|
lifetime=costs.at['decentral oil boiler','lifetime'])
|
|
|
|
network.madd("Link",
|
|
nodes + " Fischer-Tropsch",
|
|
bus0=nodes + " H2",
|
|
bus1="Fischer-Tropsch",
|
|
bus2="co2 stored",
|
|
carrier="Fischer-Tropsch",
|
|
efficiency=costs.at["Fischer-Tropsch",'efficiency'],
|
|
capital_cost=costs.at["Fischer-Tropsch",'fixed'],
|
|
efficiency2=-costs.at["oil",'CO2 intensity']*costs.at["Fischer-Tropsch",'efficiency'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['Fischer-Tropsch','lifetime'])
|
|
|
|
network.madd("Load",
|
|
["naphtha for industry"],
|
|
bus="Fischer-Tropsch",
|
|
carrier="naphtha for industry",
|
|
p_set = industrial_demand.loc[nodes,"naphtha"].sum()/8760.)
|
|
|
|
network.madd("Load",
|
|
["kerosene for aviation"],
|
|
bus="Fischer-Tropsch",
|
|
carrier="kerosene for aviation",
|
|
p_set = nodal_energy_totals.loc[nodes,["total international aviation","total domestic aviation"]].sum(axis=1).sum()*1e6/8760.)
|
|
|
|
#NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned
|
|
#except for the process emissions when naphtha is used for petrochemicals, which can be captured with other industry process emissions
|
|
#tco2 per hour
|
|
co2 = network.loads.loc[["naphtha for industry","kerosene for aviation"],"p_set"].sum()*costs.at["oil",'CO2 intensity'] - industrial_demand.loc[nodes,"process emission from feedstock"].sum()/8760.
|
|
|
|
network.madd("Load",
|
|
["Fischer-Tropsch emissions"],
|
|
bus="co2 atmosphere",
|
|
carrier="Fischer-Tropsch emissions",
|
|
p_set=-co2)
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" low-temperature heat for industry",
|
|
bus=[node + " urban central heat" if node + " urban central heat" in network.buses.index else node + " services urban decentral heat" for node in nodes],
|
|
carrier="low-temperature heat for industry",
|
|
p_set=industrial_demand.loc[nodes,"low-temperature heat"]/8760.)
|
|
|
|
#remove today's industrial electricity demand by scaling down total electricity demand
|
|
for ct in n.buses.country.unique():
|
|
loads = n.loads.index[(n.loads.index.str[:2] == ct) & (n.loads.carrier == "electricity")]
|
|
factor = 1 - industrial_demand.loc[loads,"current electricity"].sum()/n.loads_t.p_set[loads].sum().sum()
|
|
n.loads_t.p_set[loads] *= factor
|
|
|
|
network.madd("Load",
|
|
nodes,
|
|
suffix=" industry electricity",
|
|
bus=nodes,
|
|
carrier="industry electricity",
|
|
p_set=industrial_demand.loc[nodes,"electricity"]/8760.)
|
|
|
|
network.madd("Bus",
|
|
["process emissions"],
|
|
location="EU",
|
|
carrier="process emissions")
|
|
|
|
#this should be process emissions fossil+feedstock
|
|
#then need load on atmosphere for feedstock emissions that are currently going to atmosphere via Link Fischer-Tropsch demand
|
|
network.madd("Load",
|
|
["process emissions"],
|
|
bus="process emissions",
|
|
carrier="process emissions",
|
|
p_set = -industrial_demand.loc[nodes,["process emission","process emission from feedstock"]].sum(axis=1).sum()/8760.)
|
|
|
|
network.madd("Link",
|
|
["process emissions"],
|
|
bus0="process emissions",
|
|
bus1="co2 atmosphere",
|
|
carrier="process emissions",
|
|
p_nom_extendable=True,
|
|
efficiency=1.)
|
|
|
|
#assume enough local waste heat for CCS
|
|
network.madd("Link",
|
|
["process emissions CCS"],
|
|
bus0="process emissions",
|
|
bus1="co2 atmosphere",
|
|
bus2="co2 stored",
|
|
carrier="process emissions CCS",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["industry CCS","fixed"]*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
|
efficiency=(1-options["ccs_fraction"]),
|
|
efficiency2=options["ccs_fraction"],
|
|
lifetime=costs.at['industry CCS','lifetime'])
|
|
|
|
|
|
|
|
def add_waste_heat(network):
|
|
|
|
print("adding possibility to use industrial waste heat in district heating")
|
|
|
|
#AC buses with district heating
|
|
urban_central = network.buses.index[network.buses.carrier == "urban central heat"]
|
|
if not urban_central.empty:
|
|
urban_central = urban_central.str[:-len(" urban central heat")]
|
|
|
|
if options['use_fischer_tropsch_waste_heat']:
|
|
network.links.loc[urban_central + " Fischer-Tropsch","bus3"] = urban_central + " urban central heat"
|
|
network.links.loc[urban_central + " Fischer-Tropsch","efficiency3"] = 0.95 - network.links.loc[urban_central + " Fischer-Tropsch","efficiency"]
|
|
|
|
if options['use_fuel_cell_waste_heat']:
|
|
network.links.loc[urban_central + " H2 Fuel Cell","bus2"] = urban_central + " urban central heat"
|
|
network.links.loc[urban_central + " H2 Fuel Cell","efficiency2"] = 0.95 - network.links.loc[urban_central + " H2 Fuel Cell","efficiency"]
|
|
|
|
|
|
def restrict_technology_potential(n,tech,limit):
|
|
print("restricting potentials (p_nom_max) for {} to {} of technical potential".format(tech,limit))
|
|
gens = n.generators.index[n.generators.carrier.str.contains(tech)]
|
|
#beware if limit is 0 and p_nom_max is np.inf, 0*np.inf is nan
|
|
n.generators.loc[gens,"p_nom_max"] *=limit
|
|
|
|
def decentral(n):
|
|
n.lines.drop(n.lines.index,inplace=True)
|
|
n.links.drop(n.links.index[n.links.carrier.isin(["DC","B2B"])],inplace=True)
|
|
|
|
def remove_h2_network(n):
|
|
|
|
nodes = pop_layout.index
|
|
|
|
n.links.drop(n.links.index[n.links.carrier.isin(["H2 pipeline"])],inplace=True)
|
|
|
|
n.stores.drop(["EU H2 Store"],inplace=True)
|
|
|
|
if options['hydrogen_underground_storage']:
|
|
h2_capital_cost = costs.at["gas storage","fixed"]
|
|
#h2_capital_cost = costs.at["hydrogen underground storage","fixed"]
|
|
else:
|
|
h2_capital_cost = costs.at["hydrogen storage","fixed"]
|
|
|
|
#put back nodal H2 storage
|
|
n.madd("Store",
|
|
nodes + " H2 Store",
|
|
bus=nodes + " H2",
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier="H2 Store",
|
|
capital_cost=h2_capital_cost)
|
|
|
|
def get_parameter(item):
|
|
"""Check whether it depends on investment year"""
|
|
if type(item) is dict:
|
|
return item[investment_year]
|
|
else:
|
|
return item
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Detect running outside of snakemake and mock snakemake for testing
|
|
if 'snakemake' not in globals():
|
|
from vresutils.snakemake import MockSnakemake
|
|
snakemake = MockSnakemake(
|
|
wildcards=dict(network='elec', simpl='', clusters='37', lv='1.0',
|
|
opts='', planning_horizons='2020',
|
|
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1'),
|
|
input=dict(network='../pypsa-eur/networks/{network}_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc',
|
|
energy_totals_name='resources/energy_totals.csv',
|
|
co2_totals_name='resources/co2_totals.csv',
|
|
transport_name='resources/transport_data.csv',
|
|
biomass_potentials='resources/biomass_potentials.csv',
|
|
biomass_transport='data/biomass/biomass_transport_costs.csv',
|
|
timezone_mappings='data/timezone_mappings.csv',
|
|
heat_profile="data/heat_load_profile_BDEW.csv",
|
|
costs="../technology-data/outputs/costs_{planning_horizons}.csv",
|
|
h2_cavern = "data/hydrogen_salt_cavern_potentials.csv",
|
|
profile_offwind_ac="../pypsa-eur/resources/profile_offwind-ac.nc",
|
|
profile_offwind_dc="../pypsa-eur/resources/profile_offwind-dc.nc",
|
|
clustermaps='../pypsa-eur/resources/clustermaps_{network}_s{simpl}_{clusters}.h5',
|
|
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
|
|
simplified_pop_layout="resources/pop_layout_{network}_s{simpl}.csv",
|
|
industrial_demand="resources/industrial_energy_demand_{network}_s{simpl}_{clusters}.csv",
|
|
heat_demand_urban="resources/heat_demand_urban_{network}_s{simpl}_{clusters}.nc",
|
|
heat_demand_rural="resources/heat_demand_rural_{network}_s{simpl}_{clusters}.nc",
|
|
heat_demand_total="resources/heat_demand_total_{network}_s{simpl}_{clusters}.nc",
|
|
temp_soil_total="resources/temp_soil_total_{network}_s{simpl}_{clusters}.nc",
|
|
temp_soil_rural="resources/temp_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
|
temp_soil_urban="resources/temp_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
|
temp_air_total="resources/temp_air_total_{network}_s{simpl}_{clusters}.nc",
|
|
temp_air_rural="resources/temp_air_rural_{network}_s{simpl}_{clusters}.nc",
|
|
temp_air_urban="resources/temp_air_urban_{network}_s{simpl}_{clusters}.nc",
|
|
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
|
|
cop_soil_rural="resources/cop_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
|
cop_soil_urban="resources/cop_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
|
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
|
|
cop_air_rural="resources/cop_air_rural_{network}_s{simpl}_{clusters}.nc",
|
|
cop_air_urban="resources/cop_air_urban_{network}_s{simpl}_{clusters}.nc",
|
|
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
|
|
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
|
|
traffic_data = "data/emobility/",
|
|
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc",
|
|
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
|
|
floor_area = "resources/floor_area_{network}_s{simpl}_{clusters}.csv"
|
|
),
|
|
output=['pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc']
|
|
)
|
|
import yaml
|
|
with open('config.yaml', encoding='utf8') as f:
|
|
snakemake.config = yaml.safe_load(f)
|
|
|
|
|
|
logging.basicConfig(level=snakemake.config['logging_level'])
|
|
|
|
timezone_mappings = pd.read_csv(snakemake.input.timezone_mappings,index_col=0,squeeze=True,header=None)
|
|
|
|
options = snakemake.config["sector"]
|
|
|
|
opts = snakemake.wildcards.sector_opts.split('-')
|
|
|
|
investment_year=int(snakemake.wildcards.planning_horizons[-4:])
|
|
|
|
n = pypsa.Network(snakemake.input.network,
|
|
override_component_attrs=override_component_attrs)
|
|
|
|
Nyears = n.snapshot_weightings.sum()/8760.
|
|
|
|
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
|
|
pop_layout["ct"] = pop_layout.index.str[:2]
|
|
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
|
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total.get)
|
|
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
|
|
|
|
simplified_pop_layout = pd.read_csv(snakemake.input.simplified_pop_layout,index_col=0)
|
|
|
|
costs = prepare_costs(snakemake.input.costs,
|
|
snakemake.config['costs']['USD2013_to_EUR2013'],
|
|
snakemake.config['costs']['discountrate'],
|
|
Nyears,
|
|
snakemake.config['costs']['lifetime'])
|
|
|
|
remove_elec_base_techs(n)
|
|
|
|
n.loads["carrier"] = "electricity"
|
|
|
|
n.buses["location"] = n.buses.index
|
|
|
|
update_wind_solar_costs(n, costs)
|
|
|
|
if snakemake.config["foresight"]=='myopic':
|
|
add_lifetime_wind_solar(n)
|
|
add_carrier_buses(n,snakemake.config['existing_capacities']['conventional_carriers'])
|
|
|
|
add_co2_tracking(n)
|
|
|
|
add_generation(n)
|
|
|
|
add_storage(n)
|
|
|
|
for o in opts:
|
|
if "space" in o:
|
|
limit = o[o.find("space")+5:]
|
|
limit = float(limit.replace("p",".").replace("m","-"))
|
|
print(o,limit)
|
|
options['space_heating_fraction'] = limit
|
|
if o[:4] == "wave":
|
|
wave_cost_factor = float(o[4:].replace("p",".").replace("m","-"))
|
|
print("Including wave generators with cost factor of", wave_cost_factor)
|
|
add_wave(n, wave_cost_factor)
|
|
if o[:4] == "dist":
|
|
snakemake.config["sector"]['electricity_distribution_grid'] = True
|
|
snakemake.config["sector"]['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p",".").replace("m","-"))
|
|
|
|
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, co2_totals, nodal_transport_data = prepare_data(n)
|
|
|
|
if "nodistrict" in opts:
|
|
options["central"] = False
|
|
|
|
if "T" in opts:
|
|
add_land_transport(n)
|
|
|
|
if "H" in opts:
|
|
add_heat(n)
|
|
|
|
if "B" in opts:
|
|
add_biomass(n)
|
|
|
|
if "I" in opts:
|
|
add_industry(n)
|
|
|
|
if "I" in opts and "H" in opts:
|
|
add_waste_heat(n)
|
|
|
|
if "decentral" in opts:
|
|
decentral(n)
|
|
|
|
if "noH2network" in opts:
|
|
remove_h2_network(n)
|
|
|
|
for o in opts:
|
|
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
|
if m is not None:
|
|
n = average_every_nhours(n, m.group(0))
|
|
break
|
|
else:
|
|
logger.info("No resampling")
|
|
|
|
#process CO2 limit
|
|
limit = get_parameter(snakemake.config["co2_budget"])
|
|
print("CO2 limit set to",limit)
|
|
|
|
for o in opts:
|
|
if "Co2L" in o:
|
|
limit = o[o.find("Co2L")+4:]
|
|
limit = float(limit.replace("p",".").replace("m","-"))
|
|
print("overriding CO2 limit with scenario limit",limit)
|
|
|
|
print("adding CO2 budget limit as per unit of 1990 levels of",limit)
|
|
add_co2limit(n, Nyears, limit)
|
|
|
|
|
|
for o in opts:
|
|
for tech in ["solar","onwind","offwind"]:
|
|
if tech in o:
|
|
limit = o[o.find(tech)+len(tech):]
|
|
limit = float(limit.replace("p",".").replace("m","-"))
|
|
print("changing potential for",tech,"by factor",limit)
|
|
restrict_technology_potential(n,tech,limit)
|
|
|
|
if o[:10] == 'linemaxext':
|
|
maxext = float(o[10:])*1e3
|
|
print("limiting new HVAC and HVDC extensions to",maxext,"MW")
|
|
n.lines['s_nom_max'] = n.lines['s_nom'] + maxext
|
|
hvdc = n.links.index[n.links.carrier == 'DC']
|
|
n.links.loc[hvdc,'p_nom_max'] = n.links.loc[hvdc,'p_nom'] + maxext
|
|
|
|
|
|
if snakemake.config["sector"]['electricity_distribution_grid']:
|
|
insert_electricity_distribution_grid(n)
|
|
if snakemake.config["sector"]['gas_distribution_grid']:
|
|
insert_gas_distribution_costs(n)
|
|
if snakemake.config["sector"]['electricity_grid_connection']:
|
|
add_electricity_grid_connection(n)
|
|
|
|
n.export_to_netcdf(snakemake.output[0])
|