172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Build spatial distribution of industries from Hotmaps database.
|
|
"""
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
import uuid
|
|
from itertools import product
|
|
|
|
import country_converter as coco
|
|
import geopandas as gpd
|
|
import pandas as pd
|
|
from packaging.version import Version, parse
|
|
|
|
cc = coco.CountryConverter()
|
|
|
|
|
|
def locate_missing_industrial_sites(df):
|
|
"""
|
|
Locate industrial sites without valid locations based on city and
|
|
countries.
|
|
|
|
Should only be used if the model's spatial resolution is coarser
|
|
than individual cities.
|
|
"""
|
|
try:
|
|
from geopy.extra.rate_limiter import RateLimiter
|
|
from geopy.geocoders import Nominatim
|
|
except:
|
|
raise ModuleNotFoundError(
|
|
"Optional dependency 'geopy' not found."
|
|
"Install via 'conda install -c conda-forge geopy'"
|
|
"or set 'industry: hotmaps_locate_missing: false'."
|
|
)
|
|
|
|
locator = Nominatim(user_agent=str(uuid.uuid4()))
|
|
geocode = RateLimiter(locator.geocode, min_delay_seconds=2)
|
|
|
|
def locate_missing(s):
|
|
if pd.isna(s.City) or s.City == "CONFIDENTIAL":
|
|
return None
|
|
|
|
loc = geocode([s.City, s.Country], geometry="wkt")
|
|
if loc is not None:
|
|
logger.debug(f"Found:\t{loc}\nFor:\t{s['City']}, {s['Country']}\n")
|
|
return f"POINT({loc.longitude} {loc.latitude})"
|
|
else:
|
|
return None
|
|
|
|
missing = df.index[df.geom.isna()]
|
|
df.loc[missing, "coordinates"] = df.loc[missing].apply(locate_missing, axis=1)
|
|
|
|
# report stats
|
|
num_still_missing = df.coordinates.isna().sum()
|
|
num_found = len(missing) - num_still_missing
|
|
share_missing = len(missing) / len(df) * 100
|
|
share_still_missing = num_still_missing / len(df) * 100
|
|
logger.warning(
|
|
f"Found {num_found} missing locations. \nShare of missing locations reduced from {share_missing:.2f}% to {share_still_missing:.2f}%."
|
|
)
|
|
|
|
return df
|
|
|
|
|
|
def prepare_hotmaps_database(regions):
|
|
"""
|
|
Load hotmaps database of industrial sites and map onto bus regions.
|
|
"""
|
|
df = pd.read_csv(snakemake.input.hotmaps_industrial_database, sep=";", index_col=0)
|
|
|
|
df[["srid", "coordinates"]] = df.geom.str.split(";", expand=True)
|
|
|
|
if snakemake.params.hotmaps_locate_missing:
|
|
df = locate_missing_industrial_sites(df)
|
|
|
|
# remove those sites without valid locations
|
|
df.drop(df.index[df.coordinates.isna()], inplace=True)
|
|
|
|
df["coordinates"] = gpd.GeoSeries.from_wkt(df["coordinates"])
|
|
|
|
gdf = gpd.GeoDataFrame(df, geometry="coordinates", crs="EPSG:4326")
|
|
|
|
kws = (
|
|
dict(op="within")
|
|
if parse(gpd.__version__) < Version("0.10")
|
|
else dict(predicate="within")
|
|
)
|
|
gdf = gpd.sjoin(gdf, regions, how="inner", **kws)
|
|
|
|
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
|
gdf["country"] = gdf.bus.str[:2]
|
|
|
|
# the .sjoin can lead to duplicates if a geom is in two overlapping regions
|
|
if gdf.index.duplicated().any():
|
|
# get all duplicated entries
|
|
duplicated_i = gdf.index[gdf.index.duplicated()]
|
|
# convert from raw data country name to iso-2-code
|
|
code = cc.convert(gdf.loc[duplicated_i, "Country"], to="iso2")
|
|
# screen out malformed country allocation
|
|
gdf_filtered = gdf.loc[duplicated_i].query("country == @code")
|
|
# concat not duplicated and filtered gdf
|
|
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered])
|
|
|
|
return gdf
|
|
|
|
|
|
def build_nodal_distribution_key(hotmaps, regions, countries):
|
|
"""
|
|
Build nodal distribution keys for each sector.
|
|
"""
|
|
sectors = hotmaps.Subsector.unique()
|
|
|
|
keys = pd.DataFrame(index=regions.index, columns=sectors, dtype=float)
|
|
|
|
pop = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
|
pop["country"] = pop.index.str[:2]
|
|
ct_total = pop.total.groupby(pop["country"]).sum()
|
|
keys["population"] = pop.total / pop.country.map(ct_total)
|
|
|
|
for sector, country in product(sectors, countries):
|
|
regions_ct = regions.index[regions.index.str.contains(country)]
|
|
|
|
facilities = hotmaps.query("country == @country and Subsector == @sector")
|
|
|
|
if not facilities.empty:
|
|
emissions = facilities["Emissions_ETS_2014"].fillna(
|
|
hotmaps["Emissions_EPRTR_2014"]
|
|
)
|
|
if emissions.sum() == 0:
|
|
key = pd.Series(1 / len(facilities), facilities.index)
|
|
else:
|
|
# BEWARE: this is a strong assumption
|
|
emissions = emissions.fillna(emissions.mean())
|
|
key = emissions / emissions.sum()
|
|
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
|
|
else:
|
|
key = keys.loc[regions_ct, "population"]
|
|
|
|
keys.loc[regions_ct, sector] = key
|
|
|
|
return keys
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"build_industrial_distribution_key",
|
|
weather_year="",
|
|
simpl="",
|
|
clusters=128,
|
|
)
|
|
|
|
logging.basicConfig(level=snakemake.config["logging"]["level"])
|
|
|
|
countries = snakemake.params.countries
|
|
|
|
regions = gpd.read_file(snakemake.input.regions_onshore).set_index("name")
|
|
|
|
hotmaps = prepare_hotmaps_database(regions)
|
|
|
|
keys = build_nodal_distribution_key(hotmaps, regions, countries)
|
|
|
|
keys.to_csv(snakemake.output.industrial_distribution_key)
|