pypsa-eur/scripts/plot_network.py
Fabian Neumann 2fc1ea0255
some refactoring and code cleaning (#190)
* some refactoring and code cleaning

* execute pre-commit

* pre-commit: limit large files

* add license to .pre-commit

* add pre-commit to env

* solve: tidy memory logger

* travis: add conda list for easier debugging

* undo config test/tutorial without plotting, rm matplotlibrc, .licenses

* remove {networks} wildcard

* unadd pre-commit config

* add release notes

* restore REUSE compliance

* fix docs environment python version

* env: remove gurobi from dependencies

* fix unclean merge block

* fix elif to if

* lighter rtd style

* lighter rtd style II
2020-12-03 19:50:53 +01:00

284 lines
10 KiB
Python
Executable File

# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""
Plots map with pie charts and cost box bar charts.
Relevant Settings
-----------------
Inputs
------
Outputs
-------
Description
-----------
"""
import logging
from _helpers import (load_network_for_plots, aggregate_p, aggregate_costs,
configure_logging)
import pandas as pd
import numpy as np
from six.moves import zip
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.patches import Circle, Ellipse
from matplotlib.legend_handler import HandlerPatch
to_rgba = mpl.colors.colorConverter.to_rgba
logger = logging.getLogger(__name__)
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
fig = ax.get_figure()
def axes2pt():
return np.diff(ax.transData.transform([(0,0), (1,1)]), axis=0)[0] * (72./fig.dpi)
ellipses = []
if not dont_resize_actively:
def update_width_height(event):
dist = axes2pt()
for e, radius in ellipses: e.width, e.height = 2. * radius * dist
fig.canvas.mpl_connect('resize_event', update_width_height)
ax.callbacks.connect('xlim_changed', update_width_height)
ax.callbacks.connect('ylim_changed', update_width_height)
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
width, height, fontsize):
w, h = 2. * orig_handle.get_radius() * axes2pt()
e = Ellipse(xy=(0.5*width-0.5*xdescent, 0.5*height-0.5*ydescent), width=w, height=w)
ellipses.append((e, orig_handle.get_radius()))
return e
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0,0), radius=(s/scale)**0.5, **kw) for s in sizes]
def set_plot_style():
plt.style.use(['classic', 'seaborn-white',
{'axes.grid': False, 'grid.linestyle': '--', 'grid.color': u'0.6',
'hatch.color': 'white',
'patch.linewidth': 0.5,
'font.size': 12,
'legend.fontsize': 'medium',
'lines.linewidth': 1.5,
'pdf.fonttype': 42,
}])
def plot_map(n, ax=None, attribute='p_nom', opts={}):
if ax is None:
ax = plt.gca()
## DATA
line_colors = {'cur': "purple",
'exp': mpl.colors.rgb2hex(to_rgba("red", 0.7), True)}
tech_colors = opts['tech_colors']
if attribute == 'p_nom':
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
bus_sizes = pd.concat((n.generators.query('carrier != "load"').groupby(['bus', 'carrier']).p_nom_opt.sum(),
n.storage_units.groupby(['bus', 'carrier']).p_nom_opt.sum()))
line_widths_exp = dict(Line=n.lines.s_nom_opt, Link=n.links.p_nom_opt)
line_widths_cur = dict(Line=n.lines.s_nom_min, Link=n.links.p_nom_min)
else:
raise 'plotting of {} has not been implemented yet'.format(attribute)
line_colors_with_alpha = \
dict(Line=(line_widths_cur['Line'] / n.lines.s_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}),
Link=(line_widths_cur['Link'] / n.links.p_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
## FORMAT
linewidth_factor = opts['map'][attribute]['linewidth_factor']
bus_size_factor = opts['map'][attribute]['bus_size_factor']
## PLOT
n.plot(line_widths=pd.concat(line_widths_exp)/linewidth_factor,
line_colors=dict(Line=line_colors['exp'], Link=line_colors['exp']),
bus_sizes=bus_sizes/bus_size_factor,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=True,
ax=ax)
n.plot(line_widths=pd.concat(line_widths_cur)/linewidth_factor,
line_colors=pd.concat(line_colors_with_alpha),
bus_sizes=0,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=False,
ax=ax)
ax.set_aspect('equal')
ax.axis('off')
# Rasterize basemap
# TODO : Check if this also works with cartopy
for c in ax.collections[:2]: c.set_rasterized(True)
# LEGEND
handles = []
labels = []
for s in (10, 1):
handles.append(plt.Line2D([0],[0],color=line_colors['exp'],
linewidth=s*1e3/linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.24, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=1.5,
title='Transmission Exist./Exp. ')
ax.add_artist(l1_1)
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0],[0],color=line_colors['cur'],
linewidth=s*1e3/linewidth_factor))
labels.append("/")
l1_2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.26, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=0.5,
title=' ')
ax.add_artist(l1_2)
handles = make_legend_circles_for([10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w")
labels = ["{} GW".format(s) for s in (10, 5, 3)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
frameon=False, labelspacing=1.0,
title='Generation',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
techs = (bus_sizes.index.levels[1]) & pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs'])
handles = []
labels = []
for t in techs:
handles.append(plt.Line2D([0], [0], color=tech_colors[t], marker='o', markersize=8, linewidth=0))
labels.append(opts['nice_names'].get(t, t))
l3 = ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, -0.), # bbox_to_anchor=(0.72, -0.05),
handletextpad=0., columnspacing=0.5, ncol=4, title='Technology')
return fig
def plot_total_energy_pie(n, ax=None):
if ax is None: ax = plt.gca()
ax.set_title('Energy per technology', fontdict=dict(fontsize="medium"))
e_primary = aggregate_p(n).drop('load', errors='ignore').loc[lambda s: s>0]
patches, texts, autotexts = ax.pie(e_primary,
startangle=90,
labels = e_primary.rename(opts['nice_names']).index,
autopct='%.0f%%',
shadow=False,
colors = [opts['tech_colors'][tech] for tech in e_primary.index])
for t1, t2, i in zip(texts, autotexts, e_primary.index):
if e_primary.at[i] < 0.04 * e_primary.sum():
t1.remove()
t2.remove()
def plot_total_cost_bar(n, ax=None):
if ax is None: ax = plt.gca()
total_load = (n.snapshot_weightings * n.loads_t.p.sum(axis=1)).sum()
tech_colors = opts['tech_colors']
def split_costs(n):
costs = aggregate_costs(n).reset_index(level=0, drop=True)
costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True)
return (costs['capital'].add(costs['marginal'], fill_value=0.),
costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal'])
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')),
index=['AC-AC', 'AC line', 'onwind', 'offwind-ac',
'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna()
bottom = np.array([0., 0.])
texts = []
for i,ind in enumerate(costs_graph.index):
data = np.asarray(costs_graph.loc[ind])/total_load
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind],
width=0.7, zorder=-1)
bottom_sub = bottom
bottom = bottom+data
if ind in opts['conv_techs'] + ['AC line']:
for c in [costs_cap_ex, costs_marg]:
if ind in c:
data_sub = np.asarray([c.loc[ind]])/total_load
ax.bar([0.5], data_sub, linewidth=0,
bottom=bottom_sub, color=tech_colors[ind],
width=0.7, zorder=-1, alpha=0.8)
bottom_sub += data_sub
if abs(data[-1]) < 5:
continue
text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names'].get(ind,ind))
texts.append(text)
ax.set_ylabel("Average system cost [Eur/MWh]")
ax.set_ylim([0, opts.get('costs_max', 80)])
ax.set_xlim([0, 1])
ax.set_xticklabels([])
ax.grid(True, axis="y", color='k', linestyle='dotted')
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('plot_network', network='elec', simpl='',
clusters='5', ll='copt', opts='Co2L-24H',
attr='p_nom', ext="pdf")
configure_logging(snakemake)
set_plot_style()
opts = snakemake.config['plotting']
map_figsize = opts['map']['figsize']
map_boundaries = opts['map']['boundaries']
n = load_network_for_plots(snakemake.input.network, snakemake.input.tech_costs, snakemake.config)
scenario_opts = snakemake.wildcards.opts.split('-')
fig, ax = plt.subplots(figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()})
plot_map(n, ax, snakemake.wildcards.attr, opts)
fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches='tight')
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
plot_total_energy_pie(n, ax1)
ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
plot_total_cost_bar(n, ax2)
ll = snakemake.wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c='line cost', v='line volume')[ll_type]
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
.format(amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters))
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches='tight')