pypsa-eur/scripts/build_heat_totals.py
2024-03-14 14:09:39 +01:00

82 lines
2.4 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Approximate heat demand for all weather years.
"""
from itertools import product
import pandas as pd
from numpy.polynomial import Polynomial
idx = pd.IndexSlice
def approximate_heat_demand(energy_totals, hdd):
countries = hdd.columns
demands = {}
for kind, sector in product(["total", "electricity"], ["services", "residential"]):
# reduced number years (2007-2021) for regression because it implicitly
# assumes a constant building stock
row = idx[:, 2007:2021]
col = f"{kind} {sector} space"
demand = energy_totals.loc[row, col].unstack(0)
# ffill for GB in 2020- and bfill for CH 2007-2009
# compromise to have more years available for the fit
demand = demand.ffill(axis=0).bfill(axis=0)
demand_approx = {}
for c in countries:
Y = demand[c].dropna()
X = hdd.loc[Y.index, c]
# Sometimes (looking at you, Switzerland) we only have
# _one_ year of heating data to base the prediction on. In
# this case we add a point at 0, 0 to make a "polynomial"
# fit work.
if len(X) == len(Y) == 1:
X.loc[-1] = 0
Y.loc[-1] = 0
to_predict = hdd.index.difference(Y.index)
X_pred = hdd.loc[to_predict, c]
p = Polynomial.fit(X, Y, 1)
Y_pred = p(X_pred)
demand_approx[c] = pd.Series(Y_pred, index=to_predict)
demand_approx = pd.DataFrame(demand_approx)
demand_approx = pd.concat([demand, demand_approx]).sort_index()
demands[f"{kind} {sector} space"] = demand_approx.groupby(
demand_approx.index
).sum()
demands = pd.concat(demands).unstack().T.clip(lower=0)
demands.index.names = ["country", "year"]
return demands
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_heat_totals")
hdd = pd.read_csv(snakemake.input.hdd, index_col=0).T
hdd.index = hdd.index.astype(int)
energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=[0, 1])
heat_demand = approximate_heat_demand(energy_totals, hdd)
heat_demand.to_csv(snakemake.output.heat_totals)