182 lines
4.3 KiB
Python
182 lines
4.3 KiB
Python
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
"""
|
|
Plots energy and cost summaries for solved networks.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
Inputs
|
|
------
|
|
|
|
Outputs
|
|
-------
|
|
|
|
Description
|
|
-----------
|
|
|
|
"""
|
|
|
|
import os
|
|
import logging
|
|
from _helpers import configure_logging, retrieve_snakemake_keys
|
|
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def rename_techs(label):
|
|
if "H2" in label:
|
|
label = "hydrogen storage"
|
|
elif label == "solar":
|
|
label = "solar PV"
|
|
elif label == "offwind-ac":
|
|
label = "offshore wind ac"
|
|
elif label == "offwind-dc":
|
|
label = "offshore wind dc"
|
|
elif label == "onwind":
|
|
label = "onshore wind"
|
|
elif label == "ror":
|
|
label = "hydroelectricity"
|
|
elif label == "hydro":
|
|
label = "hydroelectricity"
|
|
elif label == "PHS":
|
|
label = "hydroelectricity"
|
|
elif "battery" in label:
|
|
label = "battery storage"
|
|
|
|
return label
|
|
|
|
|
|
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","onshore wind","offshore wind ac", "offshore wind dc","solar PV","solar thermal","OCGT","hydrogen storage","battery storage"])
|
|
|
|
|
|
def plot_costs(infn, config, fn=None):
|
|
|
|
## For now ignore the simpl header
|
|
cost_df = pd.read_csv(infn,index_col=list(range(3)),header=[1,2,3])
|
|
|
|
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
|
|
|
|
#convert to billions
|
|
df = df/1e9
|
|
|
|
df = df.groupby(df.index.map(rename_techs)).sum()
|
|
|
|
to_drop = df.index[df.max(axis=1) < config['plotting']['costs_threshold']]
|
|
|
|
print("dropping")
|
|
|
|
print(df.loc[to_drop])
|
|
|
|
df = df.drop(to_drop)
|
|
|
|
print(df.sum())
|
|
|
|
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
|
|
|
new_columns = df.sum().sort_values().index
|
|
|
|
fig, ax = plt.subplots()
|
|
fig.set_size_inches((12,8))
|
|
|
|
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
|
|
|
|
|
|
handles,labels = ax.get_legend_handles_labels()
|
|
|
|
handles.reverse()
|
|
labels.reverse()
|
|
|
|
ax.set_ylim([0,config['plotting']['costs_max']])
|
|
|
|
ax.set_ylabel("System Cost [EUR billion per year]")
|
|
|
|
ax.set_xlabel("")
|
|
|
|
ax.grid(axis="y")
|
|
|
|
ax.legend(handles,labels,ncol=4,loc="upper left")
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
if fn is not None:
|
|
fig.savefig(fn, transparent=True)
|
|
|
|
|
|
def plot_energy(infn, config, fn=None):
|
|
|
|
energy_df = pd.read_csv(infn, index_col=list(range(2)),header=[1,2,3])
|
|
|
|
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
|
|
|
|
#convert MWh to TWh
|
|
df = df/1e6
|
|
|
|
df = df.groupby(df.index.map(rename_techs)).sum()
|
|
|
|
to_drop = df.index[df.abs().max(axis=1) < config['plotting']['energy_threshold']]
|
|
|
|
print("dropping")
|
|
|
|
print(df.loc[to_drop])
|
|
|
|
df = df.drop(to_drop)
|
|
|
|
print(df.sum())
|
|
|
|
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
|
|
|
new_columns = df.columns.sort_values()
|
|
|
|
fig, ax = plt.subplots()
|
|
fig.set_size_inches((12,8))
|
|
|
|
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
|
|
|
|
|
|
handles,labels = ax.get_legend_handles_labels()
|
|
|
|
handles.reverse()
|
|
labels.reverse()
|
|
|
|
ax.set_ylim([config['plotting']['energy_min'], config['plotting']['energy_max']])
|
|
|
|
ax.set_ylabel("Energy [TWh/a]")
|
|
|
|
ax.set_xlabel("")
|
|
|
|
ax.grid(axis="y")
|
|
|
|
ax.legend(handles,labels,ncol=4,loc="upper left")
|
|
|
|
|
|
fig.tight_layout()
|
|
|
|
if fn is not None:
|
|
fig.savefig(fn, transparent=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from _helpers import mock_snakemake
|
|
snakemake = mock_snakemake('plot_summary', summary='energy', network='elec',
|
|
simpl='', clusters=5, ll='copt', opts='Co2L-24H',
|
|
attr='', ext='png', country='all')
|
|
configure_logging(snakemake)
|
|
|
|
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
|
|
|
|
summary = wildcards.summary
|
|
try:
|
|
func = globals()[f"plot_{summary}"]
|
|
except KeyError:
|
|
raise RuntimeError(f"plotting function for {summary} has not been defined")
|
|
|
|
func(os.path.join(paths[0], f"{summary}.csv"), config, out[0])
|