pypsa-eur/scripts/plot_summary.py

265 lines
7.5 KiB
Python

import pandas as pd
#allow plotting without Xwindows
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
#consolidate and rename
def rename_techs(label):
prefix_to_remove = ["residential ","services ","urban ","rural ","central ","decentral "]
rename_if_contains = ["CHP","gas boiler","biogas","solar thermal","air heat pump","ground heat pump","resistive heater","Fischer-Tropsch"]
rename_if_contains_dict = {"water tanks" : "hot water storage",
"retrofitting" : "building retrofitting",
"H2" : "hydrogen storage",
"battery" : "battery storage",
"CCS" : "CCS"}
rename = {"solar" : "solar PV",
"Sabatier" : "methanation",
"offwind" : "offshore wind",
"offwind-ac" : "offshore wind (AC)",
"offwind-dc" : "offshore wind (DC)",
"onwind" : "onshore wind",
"ror" : "hydroelectricity",
"hydro" : "hydroelectricity",
"PHS" : "hydroelectricity",
"co2 Store" : "DAC",
"co2 stored" : "CO2 sequestration",
"AC" : "transmission lines",
"DC" : "transmission lines",
"B2B" : "transmission lines"}
for ptr in prefix_to_remove:
if label[:len(ptr)] == ptr:
label = label[len(ptr):]
for rif in rename_if_contains:
if rif in label:
label = rif
for old,new in rename_if_contains_dict.items():
if old in label:
label = new
for old,new in rename.items():
if old == label:
label = new
return label
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","solid biomass","biogas","onshore wind","offshore wind","offshore wind (AC)","offshore wind (DC)","solar PV","solar thermal","solar","building retrofitting","ground heat pump","air heat pump","heat pump","resistive heater","power-to-heat","gas-to-power/heat","CHP","OCGT","gas boiler","gas","natural gas","helmeth","methanation","hydrogen storage","power-to-gas","power-to-liquid","battery storage","hot water storage","CO2 sequestration"])
def plot_costs():
cost_df = pd.read_csv(snakemake.input.costs,index_col=list(range(3)),header=list(range(n_header)))
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
#convert to billions
df = df/1e9
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.max(axis=1) < snakemake.config['plotting']['costs_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([0,snakemake.config['plotting']['costs_max']])
ax.set_ylabel("System Cost [EUR billion per year]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.costs,transparent=True)
def plot_energy():
energy_df = pd.read_csv(snakemake.input.energy,index_col=list(range(2)),header=list(range(n_header)))
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
#convert MWh to TWh
df = df/1e6
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
print(df)
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
#new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
print(df.loc[new_index,new_columns])
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']])
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.energy,transparent=True)
def plot_balances():
co2_carriers = ["co2","co2 stored","process emissions"]
balances_df = pd.read_csv(snakemake.input.balances,index_col=list(range(3)),header=list(range(n_header)))
balances = {i.replace(" ","_") : [i] for i in balances_df.index.levels[0]}
balances["energy"] = balances_df.index.levels[0]^co2_carriers
for k,v in balances.items():
df = balances_df.loc[v]
df = df.groupby(df.index.get_level_values(2)).sum()
#convert MWh to TWh
df = df/1e6
#remove trailing link ports
df.index = [i[:-1] if ((i != "co2") and (i[-1:] in ["0","1","2","3"])) else i for i in df.index]
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']/10]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
if df.empty:
continue
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
if v[0] in co2_carriers:
ax.set_ylabel("CO2 [MtCO2/a]")
else:
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf",transparent=True)
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml', encoding='utf8') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
for item in ["costs", "energy"]:
snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item)
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/test/csvs/supply_energy.csv'
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/test/graphs/balances-energy.csv'
n_header = 5
plot_costs()
plot_energy()
plot_balances()