pypsa-eur/scripts/add_electricity.py
2018-08-06 21:38:13 +02:00

418 lines
17 KiB
Python

# coding: utf-8
import logging
logger = logging.getLogger(__name__)
import pandas as pd
idx = pd.IndexSlice
import numpy as np
import scipy as sp
import xarray as xr
import geopandas as gpd
from vresutils.costdata import annuity
from vresutils.load import timeseries_opsd
from vresutils import transfer as vtransfer
import pypsa
import powerplantmatching as ppm
def normed(s): return s/s.sum()
def _add_missing_carriers_from_costs(n, costs, carriers):
missing_carriers = pd.Index(carriers).difference(n.carriers.index)
emissions_cols = costs.columns.to_series().loc[lambda s: s.str.endswith('_emissions')].values
n.import_components_from_dataframe(costs.loc[missing_carriers, emissions_cols].fillna(0.), 'Carrier')
def load_costs(Nyears=1., tech_costs=None, config=None, elec_config=None):
if tech_costs is None:
tech_costs = snakemake.input.tech_costs
if config is None:
config = snakemake.config['costs']
# set all asset costs and other parameters
costs = pd.read_csv(tech_costs, index_col=list(range(3))).sort_index()
# correct units to MW and EUR
costs.loc[costs.unit.str.contains("/kW"),"value"] *= 1e3
costs.loc[costs.unit.str.contains("USD"),"value"] *= config['USD2013_to_EUR2013']
costs = costs.loc[idx[:,config['year'],:], "value"].unstack(level=2).groupby("technology").sum(min_count=1)
costs = costs.fillna({"CO2 intensity" : 0,
"FOM" : 0,
"VOM" : 0,
"discount rate" : config['discountrate'],
"efficiency" : 1,
"fuel" : 0,
"investment" : 0,
"lifetime" : 25})
costs["capital_cost"] = ((annuity(costs["lifetime"], costs["discount rate"]) + costs["FOM"]/100.) *
costs["investment"] * Nyears)
costs.at['OCGT', 'fuel'] = costs.at['gas', 'fuel']
costs.at['CCGT', 'fuel'] = costs.at['gas', 'fuel']
costs['marginal_cost'] = costs['VOM'] + costs['fuel'] / costs['efficiency']
costs = costs.rename(columns={"CO2 intensity": "co2_emissions"})
costs.at['OCGT', 'co2_emissions'] = costs.at['gas', 'co2_emissions']
costs.at['CCGT', 'co2_emissions'] = costs.at['gas', 'co2_emissions']
costs.at['solar', 'capital_cost'] = 0.5*(costs.at['solar-rooftop', 'capital_cost'] + costs.at['solar-utility', 'capital_cost'])
def costs_for_storage(store, link1, link2=None, max_hours=1.):
capital_cost = link1['capital_cost'] + max_hours * store['capital_cost']
efficiency = link1['efficiency']**0.5
if link2 is not None:
capital_cost += link2['capital_cost']
efficiency *= link2['efficiency']**0.5
return pd.Series(dict(capital_cost=capital_cost,
marginal_cost=0.,
efficiency=efficiency,
co2_emissions=0.))
if elec_config is None:
elec_config = snakemake.config['electricity']
max_hours = elec_config['max_hours']
costs.loc["battery"] = \
costs_for_storage(costs.loc["battery storage"], costs.loc["battery inverter"],
max_hours=max_hours['battery'])
costs.loc["H2"] = \
costs_for_storage(costs.loc["hydrogen storage"], costs.loc["fuel cell"], costs.loc["electrolysis"],
max_hours=max_hours['H2'])
for attr in ('marginal_cost', 'capital_cost'):
overwrites = config.get(attr)
if overwrites is not None:
overwrites = pd.Series(overwrites)
costs.loc[overwrites.index, attr] = overwrites
return costs
def load_powerplants(n, ppl_fn=None):
if ppl_fn is None:
ppl_fn = snakemake.input.powerplants
return pd.read_csv(ppl_fn, index_col=0, dtype={'bus': 'str'})
# ## Attach components
# ### Load
def attach_load(n):
substation_lv_i = n.buses.index[n.buses['substation_lv']]
regions = gpd.read_file(snakemake.input.regions).set_index('name').reindex(substation_lv_i)
opsd_load = timeseries_opsd(snakemake.input.opsd_load)
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index('index')
def normed(x): return x.divide(x.sum())
def upsample(cntry, group):
l = opsd_load[cntry]
if len(group) == 1:
return pd.DataFrame({group.index[0]: l})
else:
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
transfer = vtransfer.Shapes2Shapes(group, nuts3_cntry.geometry, normed=False).T.tocsr()
gdp_n = pd.Series(transfer.dot(nuts3_cntry['gdp'].fillna(1.).values), index=group.index)
pop_n = pd.Series(transfer.dot(nuts3_cntry['pop'].fillna(1.).values), index=group.index)
# relative factors 0.6 and 0.4 have been determined from a linear
# regression on the country to continent load data (refer to vresutils.load._upsampling_weights)
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
return pd.DataFrame(factors.values * l.values[:,np.newaxis], index=l.index, columns=factors.index)
load = pd.concat([upsample(cntry, group)
for cntry, group in regions.geometry.groupby(regions.country)], axis=1)
n.madd("Load", substation_lv_i, bus=substation_lv_i, p_set=load)
### Set line costs
def update_transmission_costs(n, costs, length_factor=1.0):
n.lines['capital_cost'] = (n.lines['length'] * length_factor *
costs.at['HVAC overhead', 'capital_cost'])
dc_b = n.links.carrier == 'DC'
n.links.loc[dc_b, 'capital_cost'] = (n.links.loc[dc_b, 'length'] * length_factor *
costs.at['HVDC overhead', 'capital_cost'] +
costs.at['HVDC inverter pair', 'capital_cost'])
# ### Generators
def attach_wind_and_solar(n, costs):
for tech in snakemake.config['renewable']:
if tech == 'hydro': continue
n.add("Carrier", name=tech)
with xr.open_dataset(getattr(snakemake.input, 'profile_' + tech)) as ds:
n.madd("Generator", ds.indexes['bus'], ' ' + tech,
bus=ds.indexes['bus'],
carrier=tech,
p_nom_extendable=True,
p_nom_max=ds['p_nom_max'].to_pandas(),
weight=ds['weight'].to_pandas(),
marginal_cost=costs.at[tech, 'marginal_cost'],
capital_cost=costs.at[tech, 'capital_cost'],
efficiency=costs.at[tech, 'efficiency'],
p_max_pu=ds['profile'].transpose('time', 'bus').to_pandas())
# # Generators
def attach_conventional_generators(n, costs, ppl):
carriers = snakemake.config['electricity']['conventional_carriers']
_add_missing_carriers_from_costs(n, costs, carriers)
ppl = ppl.rename(columns={'Name': 'name', 'Capacity': 'p_nom'})
ppm_fuels = {'OCGT': 'OCGT', 'CCGT': 'CCGT',
'oil': 'Oil', 'nuclear': 'Nuclear',
'geothermal': 'Geothermal', 'biomass': 'Bioenergy',
'coal': 'Hard Coal', 'lignite': 'Lignite'}
for tech in carriers:
p = pd.DataFrame(ppl.loc[ppl['Fueltype'] == ppm_fuels[tech]])
p.index = 'C' + p.index.astype(str)
logger.info('Adding {} generators of type {} with capacity {}'
.format(len(p), tech, p.p_nom.sum()))
n.madd("Generator", p.index,
carrier=tech,
bus=p['bus'],
p_nom=p['p_nom'],
efficiency=costs.at[tech, 'efficiency'],
marginal_cost=costs.at[tech, 'marginal_cost'],
capital_cost=costs.at[tech, 'capital_cost'])
def attach_hydro(n, costs, ppl):
c = snakemake.config['renewable']['hydro']
carriers = c.get('carriers', ['ror', 'PHS', 'hydro'])
_add_missing_carriers_from_costs(n, costs, carriers)
ppl = ppl.loc[ppl['Fueltype'] == 'Hydro']
ppl = ppl.set_index(pd.RangeIndex(len(ppl)).astype(str) + ' hydro', drop=False)
ppl = ppl.rename(columns={'Capacity':'p_nom', 'Technology': 'technology'})
ppl = ppl.loc[ppl.technology.notnull(), ['bus', 'p_nom', 'technology']]
ppl = ppl.assign(
has_inflow=ppl.technology.str.contains('Reservoir|Run-Of-River|Natural Inflow'),
has_store=ppl.technology.str.contains('Reservoir|Pumped Storage'),
has_pump=ppl.technology.str.contains('Pumped Storage')
)
country = ppl.loc[ppl.has_inflow, 'bus'].map(n.buses.country)
# distribute by p_nom in each country
dist_key = ppl.loc[ppl.has_inflow, 'p_nom'].groupby(country).transform(normed)
with xr.open_dataarray(snakemake.input.profile_hydro) as inflow:
inflow_t = (
inflow.sel(countries=country.values)
.rename({'countries': 'name'})
.assign_coords(name=ppl.index[ppl.has_inflow])
.transpose('time', 'name')
.to_pandas()
.multiply(dist_key, axis=1)
)
if 'ror' in carriers:
ror = ppl.loc[ppl.has_inflow & ~ ppl.has_store]
n.madd("Generator", ror.index,
carrier='ror',
bus=ror['bus'],
p_nom=ror['p_nom'],
efficiency=costs.at['ror', 'efficiency'],
capital_cost=costs.at['ror', 'capital_cost'],
weight=ror['p_nom'],
p_max_pu=(inflow_t.loc[:, ror.index]
.divide(ror['p_nom'], axis=1)
.where(lambda df: df<=1., other=1.)))
if 'PHS' in carriers:
phs = ppl.loc[ppl.has_store & ppl.has_pump]
n.madd('StorageUnit', phs.index,
carrier='PHS',
bus=phs['bus'],
p_nom=phs['p_nom'],
capital_cost=costs.at['PHS', 'capital_cost'],
max_hours=c['PHS_max_hours'],
efficiency_store=np.sqrt(costs.at['PHS','efficiency']),
efficiency_dispatch=np.sqrt(costs.at['PHS','efficiency']),
cyclic_state_of_charge=True,
inflow=inflow_t.loc[:, phs.index[phs.has_inflow]])
if 'hydro' in carriers:
hydro = ppl.loc[ppl.has_store & ~ ppl.has_pump & ppl.has_inflow]
hydro_max_hours = c.get('hydro_max_hours')
if hydro_max_hours is None:
hydro_e_country = pd.read_csv(snakemake.input.hydro_capacities, index_col=0)["E_store[TWh]"].clip(lower=0.2)*1e6
hydro_max_hours_country = hydro_e_country / hydro.p_nom.groupby(country).sum()
hydro_max_hours = country.loc[hydro.index].map(hydro_max_hours_country)
n.madd('StorageUnit', hydro.index, carrier='hydro',
bus=hydro['bus'],
p_nom=hydro['p_nom'],
max_hours=hydro_max_hours,
capital_cost=(costs.at['hydro', 'capital_cost']
if c.get('hydro_capital_cost') else 0.),
marginal_cost=costs.at['hydro', 'marginal_cost'],
p_max_pu=1., # dispatch
p_min_pu=0., # store
efficiency_dispatch=costs.at['hydro', 'efficiency'],
efficiency_store=0.,
cyclic_state_of_charge=True,
inflow=inflow_t.loc[:, hydro.index])
def attach_extendable_generators(n, costs, ppl):
elec_opts = snakemake.config['electricity']
carriers = list(elec_opts['extendable_carriers']['Generator'])
assert carriers == ['OCGT'], "Only OCGT plants as extendable generators allowed for now"
_add_missing_carriers_from_costs(n, costs, carriers)
if 'OCGT' in carriers:
ocgt = ppl.loc[ppl.Fueltype == 'Natural Gas'].groupby('bus', as_index=False).first()
n.madd('Generator', ocgt.index,
bus=ocgt['bus'],
carrier='OCGT',
p_nom_extendable=True,
p_nom=0.,
capital_cost=costs.at['OCGT', 'capital_cost'],
marginal_cost=costs.at['OCGT', 'marginal_cost'],
efficiency=costs.at['OCGT', 'efficiency'])
def attach_storage(n, costs):
elec_opts = snakemake.config['electricity']
carriers = elec_opts['extendable_carriers']['StorageUnit']
max_hours = elec_opts['max_hours']
_add_missing_carriers_from_costs(n, costs, carriers)
buses_i = n.buses.index[n.buses.substation_lv]
for carrier in carriers:
n.madd("StorageUnit", buses_i, ' ' + carrier,
bus=buses_i,
carrier=carrier,
p_nom_extendable=True,
capital_cost=costs.at[carrier, 'capital_cost'],
marginal_cost=costs.at[carrier, 'marginal_cost'],
efficiency_store=costs.at[carrier, 'efficiency'],
efficiency_dispatch=costs.at[carrier, 'efficiency'],
max_hours=max_hours[carrier],
cyclic_state_of_charge=True)
## Implementing them separately will come later!
##
# if 'H2' in carriers:
# h2_buses = n.madd("Bus", buses + " H2", carrier="H2")
# n.madd("Link", h2_buses + " Electrolysis",
# bus1=h2_buses,
# bus0=buses,
# p_nom_extendable=True,
# efficiency=costs.at["electrolysis", "efficiency"],
# capital_cost=costs.at["electrolysis", "capital_cost"])
# n.madd("Link", h2_buses + " Fuel Cell",
# bus0=h2_buses,
# bus1=buses,
# p_nom_extendable=True,
# efficiency=costs.at["fuel cell", "efficiency"],
# #NB: fixed cost is per MWel
# capital_cost=costs.at["fuel cell", "capital_cost"] * costs.at["fuel cell", "efficiency"])
# n.madd("Store", h2_buses,
# bus=h2_buses,
# e_nom_extendable=True,
# e_cyclic=True,
# capital_cost=costs.at["hydrogen storage", "capital_cost"])
# if 'battery' in carriers:
# b_buses = n.madd("Bus", buses + " battery", carrier="battery")
# network.madd("Store", b_buses,
# bus=b_buses,
# e_cyclic=True,
# e_nom_extendable=True,
# capital_cost=costs.at['battery storage', 'capital_cost'])
# network.madd("Link", b_buses + " charger",
# bus0=buses,
# bus1=b_buses,
# efficiency=costs.at['battery inverter', 'efficiency']**0.5,
# capital_cost=costs.at['battery inverter', 'capital_cost'],
# p_nom_extendable=True)
# network.madd("Link",
# nodes + " battery discharger",
# bus0=nodes + " battery",
# bus1=nodes,
# efficiency=costs.at['battery inverter','efficiency']**0.5,
# marginal_cost=options['marginal_cost_storage'],
# p_nom_extendable=True)
def add_co2limit(n, Nyears=1.):
n.add("GlobalConstraint", "CO2Limit",
carrier_attribute="co2_emissions", sense="<=",
constant=snakemake.config['electricity']['co2limit'] * Nyears)
def add_emission_prices(n, emission_prices=None, exclude_co2=False):
if emission_prices is None:
emission_prices = snakemake.config['costs']['emission_prices']
if exclude_co2: emission_prices.pop('co2')
ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') * n.carriers).sum(axis=1)
n.generators['marginal_cost'] += n.generators.carrier.map(ep)
n.storage_units['marginal_cost'] += n.storage_units.carrier.map(ep)
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(output=['networks/elec.nc'])
snakemake.input = snakemake.expand(
Dict(base_network='networks/base.nc',
tech_costs='data/costs/costs.csv',
regions="resources/regions_onshore.geojson",
powerplants="resources/powerplants.csv",
hydro_capacities='data/hydro_capacities.csv',
opsd_load='data/time_series_60min_singleindex_filtered.csv',
**{'profile_' + t: "resources/profile_" + t + ".nc"
for t in snakemake.config['renewable']})
)
logging.basicConfig(level=snakemake.config['logging_level'])
n = pypsa.Network(snakemake.input.base_network)
Nyears = n.snapshot_weightings.sum()/8760.
costs = load_costs(Nyears)
ppl = load_powerplants(n)
attach_load(n)
update_transmission_costs(n, costs)
attach_conventional_generators(n, costs, ppl)
attach_wind_and_solar(n, costs)
attach_hydro(n, costs, ppl)
attach_extendable_generators(n, costs, ppl)
attach_storage(n, costs)
n.export_to_netcdf(snakemake.output[0])