451 lines
15 KiB
Python
451 lines
15 KiB
Python
|
|
from six import iteritems
|
|
|
|
import sys
|
|
|
|
sys.path = ['/home/vres/lib/python3.5/site-packages'] + sys.path
|
|
|
|
import pandas as pd
|
|
|
|
import pypsa
|
|
|
|
from vresutils.costdata import annuity
|
|
|
|
from prepare_network import generate_periodic_profiles
|
|
|
|
import yaml
|
|
|
|
import helper
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
opt_name = {"Store": "e", "Line" : "s", "Transformer" : "s"}
|
|
|
|
|
|
#separator to find group name
|
|
find_by = " "
|
|
|
|
#defaults for group name
|
|
defaults = {"Load" : "electricity", "Link" : "transmission lines"}
|
|
|
|
|
|
def assign_groups(n):
|
|
for c in n.iterate_components(n.one_port_components|n.branch_components):
|
|
|
|
c.df["group"] = defaults.get(c.name,"default")
|
|
|
|
ifind = pd.Series(c.df.index.str.find(find_by),c.df.index)
|
|
|
|
for i in ifind.value_counts().index:
|
|
#these have already been assigned defaults
|
|
if i == -1:
|
|
continue
|
|
|
|
names = ifind.index[ifind == i]
|
|
|
|
c.df.loc[names,'group'] = names.str[i+1:]
|
|
|
|
|
|
|
|
|
|
def calculate_costs(n,label,costs):
|
|
|
|
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
|
capital_costs = c.df.capital_cost*c.df[opt_name.get(c.name,"p") + "_nom_opt"]
|
|
capital_costs_grouped = capital_costs.groupby(c.df.group).sum()
|
|
|
|
costs = costs.reindex(costs.index|pd.MultiIndex.from_product([[c.list_name],["capital"],capital_costs_grouped.index]))
|
|
|
|
costs.loc[idx[c.list_name,"capital",list(capital_costs_grouped.index)],label] = capital_costs_grouped.values
|
|
|
|
if c.name == "Link":
|
|
p = c.pnl.p0.sum()
|
|
elif c.name == "StorageUnit":
|
|
p_all = c.pnl.p.copy()
|
|
p_all[p_all < 0.] = 0.
|
|
p = p_all.sum()
|
|
else:
|
|
p = c.pnl.p.sum()
|
|
|
|
marginal_costs = p*c.df.marginal_cost
|
|
|
|
marginal_costs_grouped = marginal_costs.groupby(c.df.group).sum()
|
|
|
|
costs = costs.reindex(costs.index|pd.MultiIndex.from_product([[c.list_name],["marginal"],marginal_costs_grouped.index]))
|
|
|
|
costs.loc[idx[c.list_name,"marginal",list(marginal_costs_grouped.index)],label] = marginal_costs_grouped.values
|
|
|
|
#add back in costs of links if there is a line volume limit
|
|
if label[1] != "opt":
|
|
costs.loc[("links-added","capital","transmission lines"),label] = ((400*1.25*n.links.length+150000.)*n.links.p_nom_opt)[n.links.group == "transmission lines"].sum()*1.5*(annuity(40., 0.07)+0.02)
|
|
|
|
#add back in all hydro
|
|
costs.loc[("storage_units","capital","hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro","p_nom"].sum()
|
|
costs.loc[("storage_units","capital","PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS","p_nom"].sum()
|
|
costs.loc[("generators","capital","ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror","p_nom"].sum()
|
|
|
|
return costs
|
|
|
|
|
|
|
|
def calculate_curtailment(n,label,curtailment):
|
|
|
|
avail = n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt).sum().groupby(n.generators.group).sum()
|
|
used = n.generators_t.p.sum().groupby(n.generators.group).sum()
|
|
|
|
curtailment[label] = (((avail - used)/avail)*100).round(3)
|
|
|
|
return curtailment
|
|
|
|
def calculate_energy(n,label,energy):
|
|
|
|
for c in n.iterate_components(n.one_port_components|n.branch_components):
|
|
|
|
if c.name in n.one_port_components:
|
|
c_energies = c.pnl.p.sum().multiply(c.df.sign).groupby(c.df.group).sum()
|
|
else:
|
|
c_energies = (-c.pnl.p1.sum() - c.pnl.p0.sum()).groupby(c.df.group).sum()
|
|
|
|
energy = energy.reindex(energy.index|pd.MultiIndex.from_product([[c.list_name],c_energies.index]))
|
|
|
|
energy.loc[idx[c.list_name,list(c_energies.index)],label] = c_energies.values
|
|
|
|
return energy
|
|
|
|
|
|
def calculate_supply(n,label,supply):
|
|
"""calculate the max dispatch of each component at the buses where the loads are attached"""
|
|
|
|
load_types = n.loads.group.value_counts().index
|
|
|
|
for i in load_types:
|
|
|
|
buses = n.loads.bus[n.loads.group == i].values
|
|
|
|
bus_map = pd.Series(False,index=n.buses.index)
|
|
|
|
bus_map.loc[buses] = True
|
|
|
|
for c in n.iterate_components(n.one_port_components):
|
|
|
|
items = c.df.index[c.df.bus.map(bus_map)]
|
|
|
|
if len(items) == 0:
|
|
continue
|
|
|
|
s = c.pnl.p[items].max().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'group']).sum()
|
|
|
|
supply = supply.reindex(supply.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
|
|
supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
|
|
|
|
|
for c in n.iterate_components(n.branch_components):
|
|
|
|
for end in ["0","1"]:
|
|
|
|
items = c.df.index[c.df["bus" + end].map(bus_map)]
|
|
|
|
if len(items) == 0:
|
|
continue
|
|
|
|
#lots of sign compensation for direction and to do maximums
|
|
s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items,'group']).sum()
|
|
|
|
supply = supply.reindex(supply.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
|
|
supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
|
|
|
return supply
|
|
|
|
def calculate_supply_energy(n,label,supply_energy):
|
|
"""calculate the total dispatch of each component at the buses where the loads are attached"""
|
|
|
|
load_types = n.loads.group.value_counts().index
|
|
|
|
for i in load_types:
|
|
|
|
buses = n.loads.bus[n.loads.group == i].values
|
|
|
|
bus_map = pd.Series(False,index=n.buses.index)
|
|
|
|
bus_map.loc[buses] = True
|
|
|
|
for c in n.iterate_components(n.one_port_components):
|
|
|
|
items = c.df.index[c.df.bus.map(bus_map)]
|
|
|
|
if len(items) == 0:
|
|
continue
|
|
|
|
s = c.pnl.p[items].sum().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'group']).sum()
|
|
|
|
supply_energy = supply_energy.reindex(supply_energy.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
|
|
supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
|
|
|
|
|
for c in n.iterate_components(n.branch_components):
|
|
|
|
for end in ["0","1"]:
|
|
|
|
items = c.df.index[c.df["bus" + end].map(bus_map)]
|
|
|
|
if len(items) == 0:
|
|
continue
|
|
|
|
s = (-1)*c.pnl["p"+end][items].sum().groupby(c.df.loc[items,'group']).sum()
|
|
|
|
supply_energy = supply_energy.reindex(supply_energy.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
|
|
supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
|
|
|
return supply_energy
|
|
|
|
def calculate_metrics(n,label,metrics):
|
|
|
|
metrics = metrics.reindex(metrics.index|pd.Index(["line_volume","line_volume_shadow","co2_shadow"]))
|
|
|
|
metrics.at["line_volume",label] = (n.links.length*n.links.p_nom_opt)[n.links.group == "transmission lines"].sum()
|
|
|
|
if "line_volume_limit" in n.shadow_prices.index:
|
|
metrics.at["line_volume_shadow",label] = n.shadow_prices.at["line_volume_limit","value"]
|
|
|
|
if "co2_constraint" in n.shadow_prices.index:
|
|
metrics.at["co2_shadow",label] = n.shadow_prices.at["co2_constraint","value"]
|
|
|
|
return metrics
|
|
|
|
|
|
def calculate_prices(n,label,prices):
|
|
|
|
bus_type = pd.Series(n.buses.index.str[3:],n.buses.index).replace("","electricity")
|
|
|
|
prices = prices.reindex(prices.index|bus_type.value_counts().index)
|
|
|
|
#WARNING: this is time-averaged, should really be load-weighted average
|
|
prices[label] = n.buses_t.marginal_price.mean().groupby(bus_type).mean()
|
|
|
|
return prices
|
|
|
|
|
|
|
|
def calculate_weighted_prices(n,label,weighted_prices):
|
|
# Warning: doesn't include storage units as loads
|
|
|
|
|
|
weighted_prices = weighted_prices.reindex(pd.Index(["electricity","heat","space heat","urban heat","space urban heat","gas","H2"]))
|
|
|
|
link_loads = {"electricity" : ["heat pump", "resistive heater", "battery charger", "H2 Electrolysis"],
|
|
"heat" : ["water tanks charger"],
|
|
"urban heat" : ["water tanks charger"],
|
|
"space heat" : [],
|
|
"space urban heat" : [],
|
|
"gas" : ["OCGT","gas boiler","CHP electric","CHP heat"],
|
|
"H2" : ["Sabatier", "H2 Fuel Cell"]}
|
|
|
|
for carrier in link_loads:
|
|
|
|
if carrier == "electricity":
|
|
suffix = ""
|
|
elif carrier[:5] == "space":
|
|
suffix = carrier[5:]
|
|
else:
|
|
suffix = " " + carrier
|
|
|
|
buses = n.buses.index[n.buses.index.str[2:] == suffix]
|
|
|
|
if buses.empty:
|
|
continue
|
|
|
|
if carrier in ["H2","gas"]:
|
|
load = pd.DataFrame(index=n.snapshots,columns=buses,data=0.)
|
|
elif carrier[:5] == "space":
|
|
load = heat_demand_df[buses.str[:2]].rename(columns=lambda i: str(i)+suffix)
|
|
else:
|
|
load = n.loads_t.p_set[buses]
|
|
|
|
|
|
for tech in link_loads[carrier]:
|
|
|
|
names = n.links.index[n.links.index.to_series().str[-len(tech):] == tech]
|
|
|
|
if names.empty:
|
|
continue
|
|
|
|
load += n.links_t.p0[names].groupby(n.links.loc[names,"bus0"],axis=1).sum(axis=1)
|
|
|
|
#Add H2 Store when charging
|
|
if carrier == "H2":
|
|
stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store","bus"],axis=1).sum(axis=1)
|
|
stores[stores > 0.] = 0.
|
|
load += -stores
|
|
|
|
weighted_prices.loc[carrier,label] = (load*n.buses_t.marginal_price[buses]).sum().sum()/load.sum().sum()
|
|
|
|
if carrier[:5] == "space":
|
|
print(load*n.buses_t.marginal_price[buses])
|
|
|
|
return weighted_prices
|
|
|
|
|
|
|
|
|
|
def calculate_market_values(n, label, market_values):
|
|
# Warning: doesn't include storage units
|
|
|
|
n.buses["suffix"] = n.buses.index.str[2:]
|
|
|
|
suffix = ""
|
|
|
|
buses = n.buses.index[n.buses.suffix == suffix]
|
|
|
|
|
|
## First do market value of generators ##
|
|
|
|
generators = n.generators.index[n.buses.loc[n.generators.bus,"suffix"] == suffix]
|
|
|
|
techs = n.generators.loc[generators,"carrier"].value_counts().index
|
|
|
|
market_values = market_values.reindex(market_values.index | techs)
|
|
|
|
|
|
for tech in techs:
|
|
gens = generators[n.generators.loc[generators,"carrier"] == tech]
|
|
|
|
dispatch = n.generators_t.p[gens].groupby(n.generators.loc[gens,"bus"],axis=1).sum().reindex(columns=buses,fill_value=0.)
|
|
|
|
revenue = dispatch*n.buses_t.marginal_price[buses]
|
|
|
|
market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum()
|
|
|
|
|
|
|
|
## Now do market value of links ##
|
|
|
|
for i in ["0","1"]:
|
|
all_links = n.links.index[n.buses.loc[n.links["bus"+i],"suffix"] == suffix]
|
|
|
|
techs = n.links.loc[all_links,"group"].value_counts().index
|
|
|
|
market_values = market_values.reindex(market_values.index | techs)
|
|
|
|
for tech in techs:
|
|
links = all_links[n.links.loc[all_links,"group"] == tech]
|
|
|
|
dispatch = n.links_t["p"+i][links].groupby(n.links.loc[links,"bus"+i],axis=1).sum().reindex(columns=buses,fill_value=0.)
|
|
|
|
revenue = dispatch*n.buses_t.marginal_price[buses]
|
|
|
|
market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum()
|
|
|
|
return market_values
|
|
|
|
|
|
def calculate_price_statistics(n, label, price_statistics):
|
|
|
|
|
|
price_statistics = price_statistics.reindex(price_statistics.index|pd.Index(["zero_hours","mean","standard_deviation"]))
|
|
|
|
n.buses["suffix"] = n.buses.index.str[2:]
|
|
|
|
suffix = ""
|
|
|
|
buses = n.buses.index[n.buses.suffix == suffix]
|
|
|
|
|
|
threshold = 0.1 #higher than phoney marginal_cost of wind/solar
|
|
|
|
df = pd.DataFrame(data=0.,columns=buses,index=n.snapshots)
|
|
|
|
df[n.buses_t.marginal_price[buses] < threshold] = 1.
|
|
|
|
price_statistics.at["zero_hours", label] = df.sum().sum()/(df.shape[0]*df.shape[1])
|
|
|
|
price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].unstack().mean()
|
|
|
|
price_statistics.at["standard_deviation", label] = n.buses_t.marginal_price[buses].unstack().std()
|
|
|
|
return price_statistics
|
|
|
|
|
|
outputs = ["costs",
|
|
"curtailment",
|
|
"energy",
|
|
"supply",
|
|
"supply_energy",
|
|
"prices",
|
|
"weighted_prices",
|
|
"price_statistics",
|
|
"market_values",
|
|
"metrics",
|
|
]
|
|
|
|
def make_summaries(networks_dict):
|
|
|
|
columns = pd.MultiIndex.from_tuples(networks_dict.keys(),names=["scenario","line_volume_limit","co2_reduction"])
|
|
|
|
df = {}
|
|
|
|
for output in outputs:
|
|
df[output] = pd.DataFrame(columns=columns,dtype=float)
|
|
|
|
for label, filename in iteritems(networks_dict):
|
|
print(label, filename)
|
|
|
|
n = helper.Network(filename)
|
|
|
|
assign_groups(n)
|
|
|
|
for output in outputs:
|
|
df[output] = globals()["calculate_" + output](n, label, df[output])
|
|
|
|
return df
|
|
|
|
|
|
def to_csv(df):
|
|
|
|
for key in df:
|
|
df[key].to_csv(snakemake.output[key])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Detect running outside of snakemake and mock snakemake for testing
|
|
if 'snakemake' not in globals():
|
|
from vresutils import Dict
|
|
import yaml
|
|
snakemake = Dict()
|
|
with open('config.yaml') as f:
|
|
snakemake.config = yaml.load(f)
|
|
snakemake.input = Dict()
|
|
snakemake.input['heat_demand_name'] = 'data/heating/daily_heat_demand.h5'
|
|
snakemake.output = Dict()
|
|
for item in outputs:
|
|
snakemake.output[item] = snakemake.config['summary_dir'] + 'version-{version}/csvs/{item}.csv'.format(version=snakemake.config['version'],item=item)
|
|
|
|
suffix = "nc" if int(snakemake.config['version']) > 100 else "h5"
|
|
|
|
networks_dict = {(flexibility,line_limit,co2_reduction) :
|
|
'{results_dir}version-{version}/postnetworks/postnetwork-{flexibility}-{line_limit}-{co2_reduction}.{suffix}'\
|
|
.format(results_dir=snakemake.config['results_dir'],
|
|
version=snakemake.config['version'],
|
|
flexibility=flexibility,
|
|
line_limit=line_limit,
|
|
co2_reduction=co2_reduction,
|
|
suffix=suffix)\
|
|
for flexibility in snakemake.config['scenario']['flexibility'] for line_limit in snakemake.config['scenario']['line_limits']
|
|
for co2_reduction in snakemake.config['scenario']['co2_reduction']}
|
|
|
|
options = yaml.load(open("options.yml","r"))
|
|
|
|
with pd.HDFStore(snakemake.input.heat_demand_name, mode='r') as store:
|
|
#the ffill converts daily values into hourly values
|
|
heat_demand_df = store['heat_demand_profiles'].reindex(index=pd.date_range(options['tmin'],options['tmax'],freq='H'), method="ffill")
|
|
|
|
|
|
intraday_profiles = pd.read_csv("data/heating/heat_load_profile_DK_AdamJensen.csv",index_col=0)
|
|
|
|
intraday_year_profiles = generate_periodic_profiles(heat_demand_df.index.tz_localize("UTC"),weekly_profile=(list(intraday_profiles["weekday"])*5 + list(intraday_profiles["weekend"])*2)).tz_localize(None)
|
|
|
|
heat_demand_df = heat_demand_df*intraday_year_profiles
|
|
|
|
df = make_summaries(networks_dict)
|
|
|
|
to_csv(df)
|