pypsa-eur/scripts/solve_operations_network.py
2023-02-16 11:50:55 +01:00

145 lines
4.3 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Solves linear optimal dispatch in hourly resolution using the capacities of
previous capacity expansion in rule :mod:`solve_network`.
Relevant Settings
-----------------
.. code:: yaml
solving:
tmpdir:
options:
formulation:
clip_p_max_pu:
load_shedding:
noisy_costs:
nhours:
min_iterations:
max_iterations:
solver:
name:
(solveroptions):
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`solving_cf`
Inputs
------
- ``networks/elec_s{simpl}_{clusters}.nc``: confer :ref:`cluster`
- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`solve`
Outputs
-------
- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op.nc``: Solved PyPSA network for optimal dispatch including optimisation results
Description
-----------
"""
import logging
from pathlib import Path
import numpy as np
import pypsa
from _helpers import configure_logging
from solve_network import prepare_network, solve_network
from vresutils.benchmark import memory_logger
logger = logging.getLogger(__name__)
def set_parameters_from_optimized(n, n_optim):
lines_typed_i = n.lines.index[n.lines.type != ""]
n.lines.loc[lines_typed_i, "num_parallel"] = n_optim.lines["num_parallel"].reindex(
lines_typed_i, fill_value=0.0
)
n.lines.loc[lines_typed_i, "s_nom"] = (
np.sqrt(3)
* n.lines["type"].map(n.line_types.i_nom)
* n.lines.bus0.map(n.buses.v_nom)
* n.lines.num_parallel
)
lines_untyped_i = n.lines.index[n.lines.type == ""]
for attr in ("s_nom", "r", "x"):
n.lines.loc[lines_untyped_i, attr] = n_optim.lines[attr].reindex(
lines_untyped_i, fill_value=0.0
)
n.lines["s_nom_extendable"] = False
links_dc_i = n.links.index[n.links.p_nom_extendable]
n.links.loc[links_dc_i, "p_nom"] = n_optim.links["p_nom_opt"].reindex(
links_dc_i, fill_value=0.0
)
n.links.loc[links_dc_i, "p_nom_extendable"] = False
gen_extend_i = n.generators.index[n.generators.p_nom_extendable]
n.generators.loc[gen_extend_i, "p_nom"] = n_optim.generators["p_nom_opt"].reindex(
gen_extend_i, fill_value=0.0
)
n.generators.loc[gen_extend_i, "p_nom_extendable"] = False
stor_units_extend_i = n.storage_units.index[n.storage_units.p_nom_extendable]
n.storage_units.loc[stor_units_extend_i, "p_nom"] = n_optim.storage_units[
"p_nom_opt"
].reindex(stor_units_extend_i, fill_value=0.0)
n.storage_units.loc[stor_units_extend_i, "p_nom_extendable"] = False
stor_extend_i = n.stores.index[n.stores.e_nom_extendable]
n.stores.loc[stor_extend_i, "e_nom"] = n_optim.stores["e_nom_opt"].reindex(
stor_extend_i, fill_value=0.0
)
n.stores.loc[stor_extend_i, "e_nom_extendable"] = False
return n
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"solve_operations_network",
simpl="",
clusters="5",
ll="copt",
opts="Co2L-BAU-24H",
)
configure_logging(snakemake)
tmpdir = snakemake.config["solving"].get("tmpdir")
if tmpdir is not None:
Path(tmpdir).mkdir(parents=True, exist_ok=True)
n = pypsa.Network(snakemake.input.unprepared)
n_optim = pypsa.Network(snakemake.input.optimized)
n = set_parameters_from_optimized(n, n_optim)
del n_optim
opts = snakemake.wildcards.opts.split("-")
snakemake.config["solving"]["options"]["skip_iterations"] = False
fn = getattr(snakemake.log, "memory", None)
with memory_logger(filename=fn, interval=30.0) as mem:
n = prepare_network(n, snakemake.config["solving"]["options"])
n = solve_network(
n,
snakemake.config,
opts,
solver_dir=tmpdir,
solver_logfile=snakemake.log.solver,
)
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))