* ammonia_production: minor cleaning and move into __main__ (#106) * biomass_potentials: code cleaning and automatic country index inferral (#107) * Revision: build energy totals (#111) * blacken * energy_totals: preliminaries * energy_totals: update build_swiss * energy_totals: update build_eurostat * energy_totals: update build_idees * energy_totals: update build_energy_totals * energy_totals: update build_eea_co2 * energy_totals: update build_eurostat_co2 * energy_totals: update build_co2_totals * energy_totals: update build_transport_data * energy_totals: add tqdm progressbar to idees * energy_totals: adjust __main__ section * energy_totals: handle inputs via Snakefile and config * energy_totals: handle data and emissions year via config * energy_totals: fix reading in eurostat for different years * energy_totals: fix erroneous drop duplicates This caused problems for waste management in HU and SI * energy_totals: make scope selection of CO2 or GHG a config option * Revision: build industrial production per country (#114) * industry-ppc: format * industry-ppc: rewrite for performance * industry-ppc: move reference year to config * industry-ppct: tidy up and format (#115) * remove stale industry demand rules (#116) * industry-epc: rewrite for performance (#117) * Revision: industrial distribution key (#118) * industry-distribution: first tidying * industry-distribution: first tidying * industry-distribution: fix syntax * Revision: industrial energy demand per node today (#119) * industry-epn: minor code cleaning * industry-epn: remove accidental artifact * industry-epn: remove accidental artifact II * industry-ppn: code cleaning (#120) * minor code cleaning (#121) * Revision: industry sector ratios (#122) * sector-ratios: basic reformatting * sector-ratios: add new read_excel function that filters year already * sector-ratios: rename jrc to idees * sector-ratios: rename conv_factor to toe_to_MWh * sector-ratios: modularise into functions * Move overriding of component attributes to function and into data (#123) * move overriding of component attributes to central function and store in separate folder * fix return of helper.override_component_attrs * prepare: fix accidental syntax error * override_component_attrs: bugfix that aligns with pypsa components * Revision: build population layout (#108) * population_layouts: move inside __main__ and blacken * population_layouts: misc code cleaning and multiprocessing * population_layouts: fix fill_values assignment of urban fractions * population_layouts: bugfig for UK-GB naming ambiguity * population_layouts: sort countries alphabetically for better overview * config: change path to atlite cutout * Revision: build clustered population layouts (#112) * population_layouts: move inside __main__ and blacken * population_layouts: misc code cleaning and multiprocessing * population_layouts: fix fill_values assignment of urban fractions * population_layouts: bugfig for UK-GB naming ambiguity * population_layouts: sort countries alphabetically for better overview * cl_pop_layout: blacken * cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning * cl_pop_layout: add fraction column which is repeatedly calculated downstream * Revision: build various heating-related time series (#113) * population_layouts: move inside __main__ and blacken * population_layouts: misc code cleaning and multiprocessing * population_layouts: fix fill_values assignment of urban fractions * population_layouts: bugfig for UK-GB naming ambiguity * population_layouts: sort countries alphabetically for better overview * cl_pop_layout: blacken * cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning * gitignore: add .vscode * heating_profiles: update to new atlite and move into __main__ * heating_profiles: remove extra cutout * heating_profiles: load regions with .buffer(0) and remove clean_invalid_geometries * heating_profiles: load regions with .buffer(0) before squeeze() * heating_profiles: account for transpose of dataarray * heating_profiles: account for transpose of dataarray in add_exiting_baseyear * Reduce verbosity of Snakefile (2) (#128) * tidy Snakefile light * Snakefile: fix indents * Snakefile: add missing RDIR * tidy config by removing quotes and expanding lists (#109) * bugfix: reorder squeeze() and buffer() * plot/summary: cosmetic changes including: (#131) - matplotlibrc for default style and backend - remove unused config options - option to configure geomap colors - option to configure geomap bounds * solve: align with pypsa-eur using ilopf (#129) * tidy myopic code scripts (#132) * use mock_snakemake from pypsa-eur (#133) * Snakefile: add benchmark files to each rule * Snakefile: only run build_retro_cost if endogenously optimised * Snakefile: remove old {network} wildcard constraints * WIP: Revision: prepare_sector_network (#124) * population_layouts: move inside __main__ and blacken * population_layouts: misc code cleaning and multiprocessing * population_layouts: fix fill_values assignment of urban fractions * population_layouts: bugfig for UK-GB naming ambiguity * population_layouts: sort countries alphabetically for better overview * cl_pop_layout: blacken * cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning * move overriding of component attributes to central function and store in separate folder * prepare: sort imports and remove six dependency * prepare: remove add_emission_prices * prepare: remove unused set_line_s_max_pu This is a function from prepare_network * prepare: remove unused set_line_volume_limit This is a PyPSA-Eur function from prepare_network * prepare: tidy add_co2limit * remove six dependency * prepare: tidy code first batch * prepare: extend override_component_attrs to avoid hacky madd * prepare: remove hacky madd() for individual components * prepare: tidy shift function * prepare: nodes and countries from n.buses not pop_layout * prepare: tidy loading of pop_layout * prepare: fix prepare_costs function * prepare: optimise loading of traffic data * prepare: move localizer into generate_periodic profiles * prepare: some formatting of transport data * prepare: eliminate some code duplication * prepare: fix remove_h2_network - only try to remove EU H2 store if it exists - remove readding nodal Stores because they are never removed * prepare: move cost adjustment to own function * prepare: fix a syntax error * prepare: add investment_year to get() assuming global variable * prepare: move co2_totals out of prepare_data() * Snakefile: remove unused prepare_sector_network inputs * prepare: move limit p/s_nom of lines/links into function * prepare: tidy add_co2limit file handling * Snakefile: fix tabs * override_component_attrs: add n/a defaults * README: Add network picture to make scope clear * README: Fix date of preprint (was too optimistic...) * prepare: move some more config options to config.yaml * prepare: runtime bugfixes * fix benchmark path * adjust plot ylims * add unit attribute to bus, correct cement capture efficiency * bugfix: land usage constrained missed inplace operation Co-authored-by: Tom Brown <tom@nworbmot.org> * add release notes * remove old fix_branches() function * deps: make geopy optional, remove unused imports * increase default BarConvTol * get ready for upcoming PyPSA release * re-remove ** bug * amend release notes Co-authored-by: Tom Brown <tom@nworbmot.org>
547 lines
17 KiB
Python
547 lines
17 KiB
Python
import pypsa
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import cartopy.crs as ccrs
|
|
|
|
from matplotlib.legend_handler import HandlerPatch
|
|
from matplotlib.patches import Circle, Ellipse
|
|
|
|
from make_summary import assign_carriers
|
|
from plot_summary import rename_techs, preferred_order
|
|
from helper import override_component_attrs
|
|
|
|
plt.style.use('ggplot')
|
|
|
|
|
|
def rename_techs_tyndp(tech):
|
|
tech = rename_techs(tech)
|
|
if "heat pump" in tech or "resistive heater" in tech:
|
|
return "power-to-heat"
|
|
elif tech in ["methanation", "hydrogen storage", "helmeth"]:
|
|
return "power-to-gas"
|
|
elif tech in ["OCGT", "CHP", "gas boiler"]:
|
|
return "gas-to-power/heat"
|
|
elif "solar" in tech:
|
|
return "solar"
|
|
elif tech == "Fischer-Tropsch":
|
|
return "power-to-liquid"
|
|
elif "offshore wind" in tech:
|
|
return "offshore wind"
|
|
else:
|
|
return tech
|
|
|
|
|
|
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
|
|
fig = ax.get_figure()
|
|
|
|
def axes2pt():
|
|
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * (72. / fig.dpi)
|
|
|
|
ellipses = []
|
|
if not dont_resize_actively:
|
|
def update_width_height(event):
|
|
dist = axes2pt()
|
|
for e, radius in ellipses:
|
|
e.width, e.height = 2. * radius * dist
|
|
fig.canvas.mpl_connect('resize_event', update_width_height)
|
|
ax.callbacks.connect('xlim_changed', update_width_height)
|
|
ax.callbacks.connect('ylim_changed', update_width_height)
|
|
|
|
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
|
|
width, height, fontsize):
|
|
w, h = 2. * orig_handle.get_radius() * axes2pt()
|
|
e = Ellipse(xy=(0.5 * width - 0.5 * xdescent, 0.5 *
|
|
height - 0.5 * ydescent), width=w, height=w)
|
|
ellipses.append((e, orig_handle.get_radius()))
|
|
return e
|
|
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
|
|
|
|
|
|
def make_legend_circles_for(sizes, scale=1.0, **kw):
|
|
return [Circle((0, 0), radius=(s / scale)**0.5, **kw) for s in sizes]
|
|
|
|
|
|
def assign_location(n):
|
|
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
|
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
|
for i in ifind.value_counts().index:
|
|
# these have already been assigned defaults
|
|
if i == -1: continue
|
|
names = ifind.index[ifind == i]
|
|
c.df.loc[names, 'location'] = names.str[:i]
|
|
|
|
|
|
def plot_map(network, components=["links", "stores", "storage_units", "generators"],
|
|
bus_size_factor=1.7e10, transmission=False):
|
|
|
|
n = network.copy()
|
|
assign_location(n)
|
|
# Drop non-electric buses so they don't clutter the plot
|
|
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
|
|
|
costs = pd.DataFrame(index=n.buses.index)
|
|
|
|
for comp in components:
|
|
df_c = getattr(n, comp)
|
|
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
|
|
|
|
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
|
|
|
|
costs_c = ((df_c.capital_cost * df_c[attr])
|
|
.groupby([df_c.location, df_c.nice_group]).sum()
|
|
.unstack().fillna(0.))
|
|
costs = pd.concat([costs, costs_c], axis=1)
|
|
|
|
print(comp, costs)
|
|
|
|
costs = costs.groupby(costs.columns, axis=1).sum()
|
|
|
|
costs.drop(list(costs.columns[(costs == 0.).all()]), axis=1, inplace=True)
|
|
|
|
new_columns = (preferred_order.intersection(costs.columns)
|
|
.append(costs.columns.difference(preferred_order)))
|
|
costs = costs[new_columns]
|
|
|
|
for item in new_columns:
|
|
if item not in snakemake.config['plotting']['tech_colors']:
|
|
print("Warning!",item,"not in config/plotting/tech_colors")
|
|
|
|
costs = costs.stack() # .sort_index()
|
|
|
|
# hack because impossible to drop buses...
|
|
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
|
|
|
|
n.links.drop(n.links.index[(n.links.carrier != "DC") & (
|
|
n.links.carrier != "B2B")], inplace=True)
|
|
|
|
# drop non-bus
|
|
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
|
|
if len(to_drop) != 0:
|
|
print("dropping non-buses", to_drop)
|
|
costs.drop(to_drop, level=0, inplace=True, axis=0)
|
|
|
|
# make sure they are removed from index
|
|
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
|
|
|
|
# PDF has minimum width, so set these to zero
|
|
line_lower_threshold = 500.
|
|
line_upper_threshold = 1e4
|
|
linewidth_factor = 2e3
|
|
ac_color = "gray"
|
|
dc_color = "m"
|
|
|
|
if snakemake.wildcards["lv"] == "1.0":
|
|
# should be zero
|
|
line_widths = n.lines.s_nom_opt - n.lines.s_nom
|
|
link_widths = n.links.p_nom_opt - n.links.p_nom
|
|
title = "Transmission reinforcement"
|
|
|
|
if transmission:
|
|
line_widths = n.lines.s_nom_opt
|
|
link_widths = n.links.p_nom_opt
|
|
linewidth_factor = 2e3
|
|
line_lower_threshold = 0.
|
|
title = "Today's transmission"
|
|
else:
|
|
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
|
|
link_widths = n.links.p_nom_opt - n.links.p_nom_min
|
|
title = "Transmission reinforcement"
|
|
|
|
if transmission:
|
|
line_widths = n.lines.s_nom_opt
|
|
link_widths = n.links.p_nom_opt
|
|
title = "Total transmission"
|
|
|
|
line_widths[line_widths < line_lower_threshold] = 0.
|
|
link_widths[link_widths < line_lower_threshold] = 0.
|
|
|
|
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
|
|
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
|
|
|
|
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
|
fig.set_size_inches(7, 6)
|
|
|
|
n.plot(
|
|
bus_sizes=costs / bus_size_factor,
|
|
bus_colors=snakemake.config['plotting']['tech_colors'],
|
|
line_colors=ac_color,
|
|
link_colors=dc_color,
|
|
line_widths=line_widths / linewidth_factor,
|
|
link_widths=link_widths / linewidth_factor,
|
|
ax=ax, **map_opts
|
|
)
|
|
|
|
handles = make_legend_circles_for(
|
|
[5e9, 1e9],
|
|
scale=bus_size_factor,
|
|
facecolor="gray"
|
|
)
|
|
|
|
labels = ["{} bEUR/a".format(s) for s in (5, 1)]
|
|
|
|
l2 = ax.legend(
|
|
handles, labels,
|
|
loc="upper left",
|
|
bbox_to_anchor=(0.01, 1.01),
|
|
labelspacing=1.0,
|
|
frameon=False,
|
|
title='System cost',
|
|
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
|
)
|
|
|
|
ax.add_artist(l2)
|
|
|
|
handles = []
|
|
labels = []
|
|
|
|
for s in (10, 5):
|
|
handles.append(plt.Line2D([0], [0], color=ac_color,
|
|
linewidth=s * 1e3 / linewidth_factor))
|
|
labels.append("{} GW".format(s))
|
|
|
|
l1_1 = ax.legend(
|
|
handles, labels,
|
|
loc="upper left",
|
|
bbox_to_anchor=(0.22, 1.01),
|
|
frameon=False,
|
|
labelspacing=0.8,
|
|
handletextpad=1.5,
|
|
title=title
|
|
)
|
|
|
|
ax.add_artist(l1_1)
|
|
|
|
fig.savefig(
|
|
snakemake.output.map,
|
|
transparent=True,
|
|
bbox_inches="tight"
|
|
)
|
|
|
|
|
|
def plot_h2_map(network):
|
|
|
|
n = network.copy()
|
|
if "H2 pipeline" not in n.links.carrier.unique():
|
|
return
|
|
|
|
assign_location(n)
|
|
|
|
bus_size_factor = 1e5
|
|
linewidth_factor = 1e4
|
|
# MW below which not drawn
|
|
line_lower_threshold = 1e3
|
|
bus_color = "m"
|
|
link_color = "c"
|
|
|
|
# Drop non-electric buses so they don't clutter the plot
|
|
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
|
|
|
elec = n.links.index[n.links.carrier == "H2 Electrolysis"]
|
|
|
|
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() / bus_size_factor
|
|
|
|
# make a fake MultiIndex so that area is correct for legend
|
|
bus_sizes.index = pd.MultiIndex.from_product(
|
|
[bus_sizes.index, ["electrolysis"]])
|
|
|
|
n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True)
|
|
|
|
link_widths = n.links.p_nom_opt / linewidth_factor
|
|
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
|
|
|
|
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
|
|
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
|
|
|
|
print(link_widths.sort_values())
|
|
|
|
print(n.links[["bus0", "bus1"]])
|
|
|
|
fig, ax = plt.subplots(
|
|
figsize=(7, 6),
|
|
subplot_kw={"projection": ccrs.PlateCarree()}
|
|
)
|
|
|
|
n.plot(
|
|
bus_sizes=bus_sizes,
|
|
bus_colors={"electrolysis": bus_color},
|
|
link_colors=link_color,
|
|
link_widths=link_widths,
|
|
branch_components=["Link"],
|
|
ax=ax, **map_opts
|
|
)
|
|
|
|
handles = make_legend_circles_for(
|
|
[50000, 10000],
|
|
scale=bus_size_factor,
|
|
facecolor=bus_color
|
|
)
|
|
|
|
labels = ["{} GW".format(s) for s in (50, 10)]
|
|
|
|
l2 = ax.legend(
|
|
handles, labels,
|
|
loc="upper left",
|
|
bbox_to_anchor=(0.01, 1.01),
|
|
labelspacing=1.0,
|
|
frameon=False,
|
|
title='Electrolyzer capacity',
|
|
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
|
)
|
|
|
|
ax.add_artist(l2)
|
|
|
|
handles = []
|
|
labels = []
|
|
|
|
for s in (50, 10):
|
|
handles.append(plt.Line2D([0], [0], color=link_color,
|
|
linewidth=s * 1e3 / linewidth_factor))
|
|
labels.append("{} GW".format(s))
|
|
|
|
l1_1 = ax.legend(
|
|
handles, labels,
|
|
loc="upper left",
|
|
bbox_to_anchor=(0.28, 1.01),
|
|
frameon=False,
|
|
labelspacing=0.8,
|
|
handletextpad=1.5,
|
|
title='H2 pipeline capacity'
|
|
)
|
|
|
|
ax.add_artist(l1_1)
|
|
|
|
fig.savefig(
|
|
snakemake.output.map.replace("-costs-all","-h2_network"),
|
|
transparent=True,
|
|
bbox_inches="tight"
|
|
)
|
|
|
|
|
|
def plot_map_without(network):
|
|
|
|
n = network.copy()
|
|
assign_location(n)
|
|
|
|
# Drop non-electric buses so they don't clutter the plot
|
|
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
|
|
|
fig, ax = plt.subplots(
|
|
figsize=(7, 6),
|
|
subplot_kw={"projection": ccrs.PlateCarree()}
|
|
)
|
|
|
|
# PDF has minimum width, so set these to zero
|
|
line_lower_threshold = 200.
|
|
line_upper_threshold = 1e4
|
|
linewidth_factor = 2e3
|
|
ac_color = "gray"
|
|
dc_color = "m"
|
|
|
|
# hack because impossible to drop buses...
|
|
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
|
|
|
|
to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")]
|
|
n.links.drop(to_drop, inplace=True)
|
|
|
|
if snakemake.wildcards["lv"] == "1.0":
|
|
line_widths = n.lines.s_nom
|
|
link_widths = n.links.p_nom
|
|
else:
|
|
line_widths = n.lines.s_nom_min
|
|
link_widths = n.links.p_nom_min
|
|
|
|
line_widths[line_widths < line_lower_threshold] = 0.
|
|
link_widths[link_widths < line_lower_threshold] = 0.
|
|
|
|
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
|
|
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
|
|
|
|
n.plot(
|
|
bus_colors="k",
|
|
line_colors=ac_color,
|
|
link_colors=dc_color,
|
|
line_widths=line_widths / linewidth_factor,
|
|
link_widths=link_widths / linewidth_factor,
|
|
ax=ax, **map_opts
|
|
)
|
|
|
|
handles = []
|
|
labels = []
|
|
|
|
for s in (10, 5):
|
|
handles.append(plt.Line2D([0], [0], color=ac_color,
|
|
linewidth=s * 1e3 / linewidth_factor))
|
|
labels.append("{} GW".format(s))
|
|
l1_1 = ax.legend(handles, labels,
|
|
loc="upper left", bbox_to_anchor=(0.05, 1.01),
|
|
frameon=False,
|
|
labelspacing=0.8, handletextpad=1.5,
|
|
title='Today\'s transmission')
|
|
ax.add_artist(l1_1)
|
|
|
|
fig.savefig(
|
|
snakemake.output.today,
|
|
transparent=True,
|
|
bbox_inches="tight"
|
|
)
|
|
|
|
|
|
def plot_series(network, carrier="AC", name="test"):
|
|
|
|
n = network.copy()
|
|
assign_location(n)
|
|
assign_carriers(n)
|
|
|
|
buses = n.buses.index[n.buses.carrier.str.contains(carrier)]
|
|
|
|
supply = pd.DataFrame(index=n.snapshots)
|
|
for c in n.iterate_components(n.branch_components):
|
|
for i in range(2):
|
|
supply = pd.concat((supply,
|
|
(-1) * c.pnl["p" + str(i)].loc[:,
|
|
c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier,
|
|
axis=1).sum()),
|
|
axis=1)
|
|
|
|
for c in n.iterate_components(n.one_port_components):
|
|
comps = c.df.index[c.df.bus.isin(buses)]
|
|
supply = pd.concat((supply, ((c.pnl["p"].loc[:, comps]).multiply(
|
|
c.df.loc[comps, "sign"])).groupby(c.df.carrier, axis=1).sum()), axis=1)
|
|
|
|
supply = supply.groupby(rename_techs_tyndp, axis=1).sum()
|
|
|
|
both = supply.columns[(supply < 0.).any() & (supply > 0.).any()]
|
|
|
|
positive_supply = supply[both]
|
|
negative_supply = supply[both]
|
|
|
|
positive_supply[positive_supply < 0.] = 0.
|
|
negative_supply[negative_supply > 0.] = 0.
|
|
|
|
supply[both] = positive_supply
|
|
|
|
suffix = " charging"
|
|
|
|
negative_supply.columns = negative_supply.columns + suffix
|
|
|
|
supply = pd.concat((supply, negative_supply), axis=1)
|
|
|
|
# 14-21.2 for flaute
|
|
# 19-26.1 for flaute
|
|
|
|
start = "2013-02-19"
|
|
stop = "2013-02-26"
|
|
|
|
threshold = 10e3
|
|
|
|
to_drop = supply.columns[(abs(supply) < threshold).all()]
|
|
|
|
if len(to_drop) != 0:
|
|
print("dropping", to_drop)
|
|
supply.drop(columns=to_drop, inplace=True)
|
|
|
|
supply.index.name = None
|
|
|
|
supply = supply / 1e3
|
|
|
|
supply.rename(columns={"electricity": "electric demand",
|
|
"heat": "heat demand"},
|
|
inplace=True)
|
|
supply.columns = supply.columns.str.replace("residential ", "")
|
|
supply.columns = supply.columns.str.replace("services ", "")
|
|
supply.columns = supply.columns.str.replace("urban decentral ", "decentral ")
|
|
|
|
preferred_order = pd.Index(["electric demand",
|
|
"transmission lines",
|
|
"hydroelectricity",
|
|
"hydro reservoir",
|
|
"run of river",
|
|
"pumped hydro storage",
|
|
"CHP",
|
|
"onshore wind",
|
|
"offshore wind",
|
|
"solar PV",
|
|
"solar thermal",
|
|
"building retrofitting",
|
|
"ground heat pump",
|
|
"air heat pump",
|
|
"resistive heater",
|
|
"OCGT",
|
|
"gas boiler",
|
|
"gas",
|
|
"natural gas",
|
|
"methanation",
|
|
"hydrogen storage",
|
|
"battery storage",
|
|
"hot water storage"])
|
|
|
|
new_columns = (preferred_order.intersection(supply.columns)
|
|
.append(supply.columns.difference(preferred_order)))
|
|
|
|
supply = supply.groupby(supply.columns, axis=1).sum()
|
|
fig, ax = plt.subplots()
|
|
fig.set_size_inches((8, 5))
|
|
|
|
(supply.loc[start:stop, new_columns]
|
|
.plot(ax=ax, kind="area", stacked=True, linewidth=0.,
|
|
color=[snakemake.config['plotting']['tech_colors'][i.replace(suffix, "")]
|
|
for i in new_columns]))
|
|
|
|
handles, labels = ax.get_legend_handles_labels()
|
|
|
|
handles.reverse()
|
|
labels.reverse()
|
|
|
|
new_handles = []
|
|
new_labels = []
|
|
|
|
for i, item in enumerate(labels):
|
|
if "charging" not in item:
|
|
new_handles.append(handles[i])
|
|
new_labels.append(labels[i])
|
|
|
|
ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False)
|
|
ax.set_xlim([start, stop])
|
|
ax.set_ylim([-1300, 1900])
|
|
ax.grid(True)
|
|
ax.set_ylabel("Power [GW]")
|
|
fig.tight_layout()
|
|
|
|
fig.savefig("{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format(
|
|
snakemake.config['results_dir'], snakemake.config['run'],
|
|
snakemake.wildcards["lv"],
|
|
carrier, start, stop, name),
|
|
transparent=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from helper import mock_snakemake
|
|
snakemake = mock_snakemake(
|
|
'plot_network',
|
|
simpl='',
|
|
clusters=48,
|
|
lv=1.0,
|
|
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
|
planning_horizons=2050,
|
|
)
|
|
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
|
|
|
map_opts = snakemake.config['plotting']['map']
|
|
|
|
plot_map(n,
|
|
components=["generators", "links", "stores", "storage_units"],
|
|
bus_size_factor=1.5e10,
|
|
transmission=False
|
|
)
|
|
|
|
plot_h2_map(n)
|
|
plot_map_without(n)
|
|
|
|
#plot_series(n, carrier="AC", name=suffix)
|
|
#plot_series(n, carrier="heat", name=suffix)
|