pypsa-eur/scripts/build_biomass_potentials.py
2024-01-02 16:31:48 +01:00

272 lines
7.5 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2021-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Compute biogas and solid biomass potentials for each clustered model region
using data from JRC ENSPRESO.
"""
import logging
logger = logging.getLogger(__name__)
import geopandas as gpd
import numpy as np
import pandas as pd
AVAILABLE_BIOMASS_YEARS = [2010, 2020, 2030, 2040, 2050]
def build_nuts_population_data(year=2013):
pop = pd.read_csv(
snakemake.input.nuts3_population,
sep=r"\,| \t|\t",
engine="python",
na_values=[":"],
index_col=1,
)[str(year)]
# only countries
pop.drop("EU28", inplace=True)
# mapping from Cantons to NUTS3
cantons = pd.read_csv(snakemake.input.swiss_cantons)
cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
cantons = cantons.str.pad(5, side="right", fillchar="0")
# get population by NUTS3
swiss = pd.read_excel(
snakemake.input.swiss_population, skiprows=3, index_col=0
).loc["Residents in 1000"]
swiss = swiss.rename(cantons).filter(like="CH")
# aggregate also to higher order NUTS levels
swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
# merge Europe + Switzerland
pop = pd.concat([pop, pd.concat(swiss)]).to_frame("total")
# add missing manually
pop["AL"] = 2893
pop["BA"] = 3871
pop["RS"] = 7210
pop["ct"] = pop.index.str[:2]
return pop
def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
"""
Loads the JRC ENSPRESO biomass potentials.
Parameters
----------
year : int
The year for which potentials are to be taken.
Can be {2010, 2020, 2030, 2040, 2050}.
scenario : str
The scenario. Can be {"ENS_Low", "ENS_Med", "ENS_High"}.
Returns
-------
pd.DataFrame
Biomass potentials for given year and scenario
in TWh/a by commodity and NUTS2 region.
"""
glossary = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="Glossary",
usecols="B:D",
skiprows=1,
index_col=0,
)
df = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="ENER - NUTS2 BioCom E",
usecols="A:H",
)
df["group"] = df["E-Comm"].map(glossary.group)
df["commodity"] = df["E-Comm"].map(glossary.description)
to_rename = {
"NUTS2 Potential available by Bio Commodity": "potential",
"NUST2": "NUTS2",
}
df.rename(columns=to_rename, inplace=True)
# fill up with NUTS0 if NUTS2 is not given
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == "-" else x.NUTS2, axis=1)
# convert PJ to TWh
df.potential /= 3.6
df.Unit = "TWh/a"
dff = df.query("Year == @year and Scenario == @scenario")
bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
# currently Serbia and Kosovo not split, so aggregate
bio.loc["RS"] += bio.loc["XK"]
bio.drop("XK", inplace=True)
return bio
def disaggregate_nuts0(bio):
"""
Some commodities are only given on NUTS0 level. These are disaggregated
here using the NUTS2 population as distribution key.
Parameters
----------
bio : pd.DataFrame
from enspreso_biomass_potentials()
Returns
-------
pd.DataFrame
"""
pop = build_nuts_population_data()
# get population in nuts2
pop_nuts2 = pop.loc[pop.index.str.len() == 4]
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
pop_nuts2.loc[:, "fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
# distribute nuts0 data to nuts2 by population
bio_nodal = bio.loc[pop_nuts2.ct]
bio_nodal.index = pop_nuts2.index
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0)
# update inplace
bio.update(bio_nodal)
return bio
def build_nuts2_shapes():
"""
- load NUTS2 geometries
- add RS, AL, BA country shapes (not covered in NUTS 2013)
- consistently name ME, MK
"""
nuts2 = gpd.GeoDataFrame(
gpd.read_file(snakemake.input.nuts2).set_index("id").geometry
)
countries = gpd.read_file(snakemake.input.country_shapes).set_index("name")
missing_iso2 = countries.index.intersection(["AL", "RS", "BA"])
missing = countries.loc[missing_iso2]
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
return pd.concat([nuts2, missing])
def area(gdf):
"""
Returns area of GeoDataFrame geometries in square kilometers.
"""
return gdf.to_crs(epsg=3035).area.div(1e6)
def convert_nuts2_to_regions(bio_nuts2, regions):
"""
Converts biomass potentials given in NUTS2 to PyPSA-Eur regions based on
the overlay of both GeoDataFrames in proportion to the area.
Parameters
----------
bio_nuts2 : gpd.GeoDataFrame
JRC ENSPRESO biomass potentials indexed by NUTS2 shapes.
regions : gpd.GeoDataFrame
PyPSA-Eur clustered onshore regions
Returns
-------
gpd.GeoDataFrame
"""
# calculate area of nuts2 regions
bio_nuts2["area_nuts2"] = area(bio_nuts2)
overlay = gpd.overlay(regions, bio_nuts2, keep_geom_type=True)
# calculate share of nuts2 area inside region
overlay["share"] = area(overlay) / overlay["area_nuts2"]
# multiply all nuts2-level values with share of nuts2 inside region
adjust_cols = overlay.columns.difference(
{"name", "area_nuts2", "geometry", "share"}
)
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
bio_regions = overlay.dissolve("name", aggfunc="sum")
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
return bio_regions
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_biomass_potentials",
simpl="",
clusters="5",
planning_horizons=2050,
)
overnight = snakemake.config["foresight"] == "overnight"
params = snakemake.params.biomass
investment_year = int(snakemake.wildcards.planning_horizons)
year = params["year"] if overnight else investment_year
scenario = params["scenario"]
if year > 2050:
logger.info("No biomass potentials for years after 2050, using 2050.")
max_year = max(AVAILABLE_BIOMASS_YEARS)
enspreso = enspreso_biomass_potentials(max_year, scenario)
elif year not in AVAILABLE_BIOMASS_YEARS:
before = int(np.floor(year / 10) * 10)
after = int(np.ceil(year / 10) * 10)
logger.info(
f"No biomass potentials for {year}, interpolating linearly between {before} and {after}."
)
enspreso_before = enspreso_biomass_potentials(before, scenario)
enspreso_after = enspreso_biomass_potentials(after, scenario)
fraction = (year - before) / (after - before)
enspreso = enspreso_before + fraction * (enspreso_after - enspreso_before)
else:
logger.info(f"Using biomass potentials for {year}.")
enspreso = enspreso_biomass_potentials(year, scenario)
enspreso = disaggregate_nuts0(enspreso)
nuts2 = build_nuts2_shapes()
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
regions = gpd.read_file(snakemake.input.regions_onshore)
df = convert_nuts2_to_regions(df_nuts2, regions)
df.to_csv(snakemake.output.biomass_potentials_all)
grouper = {v: k for k, vv in params["classes"].items() for v in vv}
df = df.T.groupby(grouper).sum().T
df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a"
df.to_csv(snakemake.output.biomass_potentials)