pypsa-eur/scripts/build_energy_totals.py

723 lines
25 KiB
Python

from functools import partial
from tqdm import tqdm
import multiprocessing as mp
import pandas as pd
import geopandas as gpd
import numpy as np
idx = pd.IndexSlice
def cartesian(s1, s2):
"""Cartesian product of two pd.Series"""
return pd.DataFrame(np.outer(s1, s2), index=s1.index, columns=s2.index)
def reverse(dictionary):
"""reverses a keys and values of a dictionary"""
return {v: k for k, v in dictionary.items()}
non_EU = ["NO", "CH", "ME", "MK", "RS", "BA", "AL"]
idees_rename = {"GR": "EL", "GB": "UK"}
eu28 = [
"FR",
"DE",
"GB",
"IT",
"ES",
"PL",
"SE",
"NL",
"BE",
"FI",
"CZ",
"DK",
"PT",
"RO",
"AT",
"BG",
"EE",
"GR",
"LV",
"HU",
"IE",
"SK",
"LT",
"HR",
"LU",
"SI",
] + ["CY", "MT"]
eu28_eea = eu28.copy()
eu28_eea.remove("GB")
eu28_eea.append("UK")
to_ipcc = {
"electricity": "1.A.1.a - Public Electricity and Heat Production",
"residential non-elec": "1.A.4.b - Residential",
"services non-elec": "1.A.4.a - Commercial/Institutional",
"rail non-elec": "1.A.3.c - Railways",
"road non-elec": "1.A.3.b - Road Transportation",
"domestic navigation": "1.A.3.d - Domestic Navigation",
"international navigation": "1.D.1.b - International Navigation",
"domestic aviation": "1.A.3.a - Domestic Aviation",
"international aviation": "1.D.1.a - International Aviation",
"total energy": "1 - Energy",
"industrial processes": "2 - Industrial Processes and Product Use",
"agriculture": "3 - Agriculture",
"agriculture, forestry and fishing": '1.A.4.c - Agriculture/Forestry/Fishing',
"LULUCF": "4 - Land Use, Land-Use Change and Forestry",
"waste management": "5 - Waste management",
"other": "6 - Other Sector",
"indirect": "ind_CO2 - Indirect CO2",
"total wL": "Total (with LULUCF)",
"total woL": "Total (without LULUCF)",
}
def eurostat_per_country(country):
country_fn = idees_rename.get(country, country)
fn = snakemake.input.eurostat + f"/{country_fn}-Energy-balance-sheets-June-2021-edition.xlsb"
df = pd.read_excel(
fn,
sheet_name=None,
skiprows=4,
index_col=list(range(3)),
na_values=["+", "-", "=", "Z", ":"],
)
df.pop("Cover")
return pd.concat(df)
def build_eurostat(countries, year=None):
"""Return multi-index for all countries' energy data in TWh/a."""
nprocesses = snakemake.threads
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
desc='Build from eurostat database')
with mp.Pool(processes=nprocesses) as pool:
dfs = list(tqdm(pool.imap(eurostat_per_country, countries), **tqdm_kwargs))
index_names = ['country', 'year', 'lvl1', 'lvl2', 'lvl3']
df = pd.concat(dfs, keys=countries, names=index_names)
df.dropna(how='all', axis=0, inplace=True)
df.dropna(how='all', axis=1, inplace=True)
df = df[df.index.get_level_values('lvl1') != 'ktoe']
i = df.index.to_frame(index=False)
i.loc[i.lvl2 == 'Primary production', ['lvl1', 'lvl3']] = 'Main'
i.loc[i.lvl2 == 'Gross electricity production', 'lvl1'] = "Gross production"
i.ffill(inplace=True)
df.index = pd.MultiIndex.from_frame(i)
df.drop(list(range(1990, 2020)), axis=1, inplace=True)
df.drop("Unnamed: 7", axis=1, inplace=True)
df.fillna(0., inplace=True)
# convert ktoe/a to TWh/a
df *= 11.63 / 1e3
df.index = df.index.set_levels(df.index.levels[1].astype(int), level=1)
if year:
df = df.xs(year, level='year')
return df
def build_swiss(year=None):
"""Return a pd.DataFrame of Swiss energy data in TWh/a"""
fn = snakemake.input.swiss
df = pd.read_csv(fn, index_col=[0,1]).stack().unstack('item')
df.index.names = ["country", "year"]
df.index = df.index.set_levels(df.index.levels[1].astype(int), level=1)
if year:
df = df.xs(year, level='year')
# convert PJ/a to TWh/a
df /= 3.6
return df
def idees_per_country(country):
base_dir = snakemake.input.idees
ct_totals = {}
ct_idees = idees_rename.get(country, country)
fn_residential = f"{base_dir}/JRC-IDEES-2015_Residential_{ct_idees}.xlsx"
fn_tertiary = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
fn_transport = f"{base_dir}/JRC-IDEES-2015_Transport_{ct_idees}.xlsx"
# residential
df = pd.read_excel(fn_residential, "RES_hh_fec", index_col=0)
ct_totals["total residential space"] = df.loc["Space heating"]
rows = ["Advanced electric heating", "Conventional electric heating"]
ct_totals["electricity residential space"] = df.loc[rows].sum()
ct_totals["total residential water"] = df.loc["Water heating"]
assert df.index[23] == "Electricity"
ct_totals["electricity residential water"] = df.iloc[23]
ct_totals["total residential cooking"] = df.loc["Cooking"]
assert df.index[30] == "Electricity"
ct_totals["electricity residential cooking"] = df.iloc[30]
df = pd.read_excel(fn_residential, "RES_summary", index_col=0)
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
ct_totals["total residential"] = df.loc[row]
assert df.index[47] == "Electricity"
ct_totals["electricity residential"] = df.iloc[47]
assert df.index[46] == "Derived heat"
ct_totals["derived heat residential"] = df.iloc[46]
assert df.index[50] == 'Thermal uses'
ct_totals["thermal uses residential"] = df.iloc[50]
# services
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)
ct_totals["total services space"] = df.loc["Space heating"]
rows = ["Advanced electric heating", "Conventional electric heating"]
ct_totals["electricity services space"] = df.loc[rows].sum()
ct_totals["total services water"] = df.loc["Hot water"]
assert df.index[24] == "Electricity"
ct_totals["electricity services water"] = df.iloc[24]
ct_totals["total services cooking"] = df.loc["Catering"]
assert df.index[31] == "Electricity"
ct_totals["electricity services cooking"] = df.iloc[31]
df = pd.read_excel(fn_tertiary, "SER_summary", index_col=0)
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
ct_totals["total services"] = df.loc[row]
assert df.index[50] == "Electricity"
ct_totals["electricity services"] = df.iloc[50]
assert df.index[49] == "Derived heat"
ct_totals["derived heat services"] = df.iloc[49]
assert df.index[53] == 'Thermal uses'
ct_totals["thermal uses services"] = df.iloc[53]
# agriculture, forestry and fishing
start = "Detailed split of energy consumption (ktoe)"
end = "Market shares of energy uses (%)"
df = pd.read_excel(fn_tertiary, "AGR_fec", index_col=0).loc[start:end]
rows = [
"Lighting",
"Ventilation",
"Specific electricity uses",
"Pumping devices (electric)"
]
ct_totals["total agriculture electricity"] = df.loc[rows].sum()
rows = ["Specific heat uses", "Low enthalpy heat"]
ct_totals["total agriculture heat"] = df.loc[rows].sum()
rows = [
"Motor drives",
"Farming machine drives (diesel oil incl. biofuels)",
"Pumping devices (diesel oil incl. biofuels)",
]
ct_totals["total agriculture machinery"] = df.loc[rows].sum()
row = "Agriculture, forestry and fishing"
ct_totals["total agriculture"] = df.loc[row]
# transport
df = pd.read_excel(fn_transport, "TrRoad_ene", index_col=0)
ct_totals["total road"] = df.loc["by fuel (EUROSTAT DATA)"]
ct_totals["electricity road"] = df.loc["Electricity"]
ct_totals["total two-wheel"] = df.loc["Powered 2-wheelers (Gasoline)"]
assert df.index[19] == "Passenger cars"
ct_totals["total passenger cars"] = df.iloc[19]
assert df.index[30] == "Battery electric vehicles"
ct_totals["electricity passenger cars"] = df.iloc[30]
assert df.index[31] == "Motor coaches, buses and trolley buses"
ct_totals["total other road passenger"] = df.iloc[31]
assert df.index[39] == "Battery electric vehicles"
ct_totals["electricity other road passenger"] = df.iloc[39]
assert df.index[41] == "Light duty vehicles"
ct_totals["total light duty road freight"] = df.iloc[41]
assert df.index[49] == "Battery electric vehicles"
ct_totals["electricity light duty road freight"] = df.iloc[49]
row = "Heavy duty vehicles (Diesel oil incl. biofuels)"
ct_totals["total heavy duty road freight"] = df.loc[row]
assert df.index[61] == "Passenger cars"
ct_totals["passenger car efficiency"] = df.iloc[61]
df = pd.read_excel(fn_transport, "TrRail_ene", index_col=0)
ct_totals["total rail"] = df.loc["by fuel (EUROSTAT DATA)"]
ct_totals["electricity rail"] = df.loc["Electricity"]
assert df.index[15] == "Passenger transport"
ct_totals["total rail passenger"] = df.iloc[15]
assert df.index[16] == "Metro and tram, urban light rail"
assert df.index[19] == "Electric"
assert df.index[20] == "High speed passenger trains"
ct_totals["electricity rail passenger"] = df.iloc[[16, 19, 20]].sum()
assert df.index[21] == "Freight transport"
ct_totals["total rail freight"] = df.iloc[21]
assert df.index[23] == "Electric"
ct_totals["electricity rail freight"] = df.iloc[23]
df = pd.read_excel(fn_transport, "TrAvia_ene", index_col=0)
assert df.index[6] == "Passenger transport"
ct_totals["total aviation passenger"] = df.iloc[6]
assert df.index[10] == "Freight transport"
ct_totals["total aviation freight"] = df.iloc[10]
assert df.index[7] == "Domestic"
ct_totals["total domestic aviation passenger"] = df.iloc[7]
assert df.index[8] == "International - Intra-EU"
assert df.index[9] == "International - Extra-EU"
ct_totals["total international aviation passenger"] = df.iloc[[8,9]].sum()
assert df.index[11] == "Domestic and International - Intra-EU"
ct_totals["total domestic aviation freight"] = df.iloc[11]
assert df.index[12] == "International - Extra-EU"
ct_totals["total international aviation freight"] = df.iloc[12]
ct_totals["total domestic aviation"] = ct_totals["total domestic aviation freight"] \
+ ct_totals["total domestic aviation passenger"]
ct_totals["total international aviation"] = ct_totals["total international aviation freight"] \
+ ct_totals["total international aviation passenger"]
df = pd.read_excel(fn_transport, "TrNavi_ene", index_col=0)
# coastal and inland
ct_totals["total domestic navigation"] = df.loc["by fuel (EUROSTAT DATA)"]
df = pd.read_excel(fn_transport, "TrRoad_act", index_col=0)
assert df.index[85] == "Passenger cars"
ct_totals["passenger cars"] = df.iloc[85]
return pd.DataFrame(ct_totals)
def build_idees(countries, year=None):
nprocesses = snakemake.threads
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
desc='Build from IDEES database')
with mp.Pool(processes=nprocesses) as pool:
dfs = list(tqdm(pool.imap(idees_per_country, countries), **tqdm_kwargs))
df = pd.concat(dfs, keys=countries, names=['country', 'year'])
# convert ktoe to TWh
exclude = df.columns.str.fullmatch("passenger cars")
df.loc[:,~exclude] *= 11.63 / 1e3
# convert TWh/100km to kWh/km
df["passenger car efficiency"] *= 10
# district heating share
subset = ["derived heat residential", "derived heat services"]
district_heat = df[subset].sum(axis=1)
subset = ["thermal uses residential", "thermal uses services"]
total_heat = df[subset].sum(axis=1)
df["district heat share"] = district_heat.div(total_heat)
if year:
df = df.xs(int(year), level='year')
df.columns.name = 'item'
return df
def build_energy_totals(countries, eurostat, swiss, idees):
eurostat_fuels = dict(
electricity="Electricity",
total="Total"
)
eurostat_sectors = dict(
residential="Households",
services="Commercial & public services",
road="Road",
rail="Rail"
)
to_drop = ["passenger cars", "passenger car efficiency"]
new_index = pd.MultiIndex.from_product(
[countries, eurostat.index.levels[1]],
names=["country", "year"]
)
df = idees.reindex(new_index).drop(to_drop, axis=1)
eurostat_countries = eurostat.index.levels[0]
in_eurostat = df.index.levels[0].intersection(eurostat_countries)
# add international navigation
slicer = idx[in_eurostat, :, :, "International maritime bunkers", :]
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
df.loc[in_eurostat, "total international navigation"] = fill_values
# add swiss energy data
df.loc["CH"] = swiss
# get values for missing countries based on Eurostat EnergyBalances
# divide cooking/space/water according to averages in EU28
to_fill = df.index[df["total residential"].isna() & df.index.get_level_values('country').isin(eurostat_countries)]
uses = ["space", "cooking", "water"]
c = to_fill.get_level_values('country')
y = to_fill.get_level_values('year')
for sector in ["residential", "services", "road", "rail"]:
# fuel use
for fuel in ["electricity", "total"]:
slicer = idx[c, y, :, :, eurostat_sectors[sector]]
fill_values = eurostat.loc[slicer, eurostat_fuels[fuel]].groupby(level=[0,1]).sum()
df.loc[to_fill, f"{fuel} {sector}"] = fill_values
for sector in ["residential", "services"]:
# electric use
for use in uses:
fuel_use = df[f"electricity {sector} {use}"]
fuel = df[f"electricity {sector}"]
avg = fuel_use.div(fuel).mean()
print(f"{sector}: average fraction of electricity for {use} is {avg:.3f}")
df.loc[to_fill, f"electricity {sector} {use}"] = avg * df.loc[to_fill, f"electricity {sector}"]
# non-electric use
for use in uses:
nonelectric_use = df[f"total {sector} {use}"] - df[f"electricity {sector} {use}"]
nonelectric = df[f"total {sector}"] - df[f"electricity {sector}"]
avg = nonelectric_use.div(nonelectric).mean()
print(f"{sector}: average fraction of non-electric for {use} is {avg:.3f}")
electric_use = df.loc[to_fill, f"electricity {sector} {use}"]
nonelectric = df.loc[to_fill, f"total {sector}"] - df.loc[to_fill, f"electricity {sector}"]
df.loc[to_fill, f"total {sector} {use}"] = electric_use + avg * nonelectric
# Fix Norway space and water heating fractions
# http://www.ssb.no/en/energi-og-industri/statistikker/husenergi/hvert-3-aar/2014-07-14
# The main heating source for about 73 per cent of the households is based on electricity
# => 26% is non-electric
elec_fraction = 0.73
no_norway = df.drop("NO")
for sector in ["residential", "services"]:
# assume non-electric is heating
nonelectric = df.loc["NO", f"total {sector}"] - df.loc["NO", f"electricity {sector}"]
total_heating = nonelectric / (1 - elec_fraction)
for use in uses:
nonelectric_use = no_norway[f"total {sector} {use}"] - no_norway[f"electricity {sector} {use}"]
nonelectric = no_norway[f"total {sector}"] - no_norway[f"electricity {sector}"]
fraction = nonelectric_use.div(nonelectric).mean()
df.loc["NO", f"total {sector} {use}"] = (total_heating * fraction).values
df.loc["NO", f"electricity {sector} {use}"] = (total_heating * fraction * elec_fraction).values
# Missing aviation
slicer = idx[c, y, :, :, "Domestic aviation"]
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
df.loc[to_fill, "total domestic aviation"] = fill_values
slicer = idx[c, y, :, "International aviation", :]
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
df.loc[to_fill, "total international aviation"] = fill_values
# missing domestic navigation
slicer = idx[c, y, :, :, "Domestic navigation"]
fill_values = eurostat.loc[slicer, "Total"].groupby(level=[0,1]).sum()
df.loc[to_fill, "total domestic navigation"] = fill_values
# split road traffic for non-IDEES
missing = df.index[df["total passenger cars"].isna()]
for fuel in ["electricity", "total"]:
selection = [
f"{fuel} passenger cars",
f"{fuel} other road passenger",
f"{fuel} light duty road freight",
]
if fuel == "total":
selection.extend([
f"{fuel} two-wheel",
f"{fuel} heavy duty road freight"
])
road = df[selection].sum()
road_fraction = road / road.sum()
fill_values = cartesian(df.loc[missing, f"{fuel} road"], road_fraction)
df.loc[missing, road_fraction.index] = fill_values
# split rail traffic for non-IDEES
missing = df.index[df["total rail passenger"].isna()]
for fuel in ["total", "electricity"]:
selection = [f"{fuel} rail passenger", f"{fuel} rail freight"]
rail = df[selection].sum()
rail_fraction = rail / rail.sum()
fill_values = cartesian(df.loc[missing, f"{fuel} rail"], rail_fraction)
df.loc[missing, rail_fraction.index] = fill_values
# split aviation traffic for non-IDEES
missing = df.index[df["total domestic aviation passenger"].isna()]
for destination in ["domestic", "international"]:
selection = [
f"total {destination} aviation passenger",
f"total {destination} aviation freight",
]
aviation = df[selection].sum()
aviation_fraction = aviation / aviation.sum()
fill_values = cartesian(df.loc[missing, f"total {destination} aviation"], aviation_fraction)
df.loc[missing, aviation_fraction.index] = fill_values
for purpose in ["passenger", "freight"]:
attrs = [f"total domestic aviation {purpose}", f"total international aviation {purpose}"]
df.loc[missing, f"total aviation {purpose}"] = df.loc[missing, attrs].sum(axis=1)
if "BA" in df.index:
# fill missing data for BA proportional to RS
ratio = (df.loc["BA"].loc[2014:2020] / df.loc["RS"].loc[2014:2020]).mean()
df.loc["BA"] = (ratio * df.loc["RS"]).values
# Missing district heating share
dh_share = pd.read_csv(snakemake.input.district_heat_share,
index_col=0, usecols=[0, 1])
dh_share = pd.concat({y: dh_share for y in range(1990, 2021)}, names=["year", "country"]).swaplevel()
dh_share = dh_share.div(100).reindex(df.index)
# make conservative assumption and take minimum from both data sets
item = "district heat share"
df[item] = pd.concat([dh_share, df[item]], axis=1).min(axis=1)
return df
def build_eea_co2(year=1990):
# https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
# downloaded 201228 (modified by EEA last on 201221)
df = pd.read_csv(snakemake.input.co2, encoding="latin-1")
df.replace(dict(Year="1985-1987"), 1986, inplace=True)
df.Year = df.Year.astype(int)
index_col = ["Country_code", "Pollutant_name", "Year", "Sector_name"]
df = df.set_index(index_col).sort_index()
emissions_scope = snakemake.config["energy"]["emissions"]
cts = ["CH", "EUA", "NO"] + eu28_eea
slicer = idx[cts, emissions_scope, year, to_ipcc.values()]
emissions = (
df.loc[slicer, "emissions"]
.unstack("Sector_name")
.rename(columns=reverse(to_ipcc))
.droplevel([1,2])
)
emissions.rename(index={"EUA": "EU28", "UK": "GB"}, inplace=True)
to_subtract = [
"electricity",
"services non-elec",
"residential non-elec",
"road non-elec",
"rail non-elec",
"domestic aviation",
"international aviation",
"domestic navigation",
"international navigation",
"agriculture, forestry and fishing"
]
emissions["industrial non-elec"] = emissions["total energy"] - emissions[to_subtract].sum(axis=1)
emissions["agriculture"] += emissions["agriculture, forestry and fishing"]
to_drop = ["total energy", "total wL", "total woL", "agriculture, forestry and fishing"]
emissions.drop(columns=to_drop, inplace=True)
# convert from Gg to Mt
return emissions / 1e3
def build_eurostat_co2(countries, eurostat=None, year=1990):
if eurostat is None:
df = build_eurostat(countries, year)
else:
df = eurostat.xs(year, level='year')
specific_emissions = pd.Series(index=df.columns, dtype=float)
# emissions in tCO2_equiv per MWh_th
specific_emissions["Solid fossil fuels"] = 0.36 # Approximates coal
specific_emissions["Oil and petroleum products"] = 0.285 # Average of distillate and residue
specific_emissions["Natural gas"] = 0.2 # For natural gas
# oil values from https://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11
# Distillate oil (No. 2) 0.276
# Residual oil (No. 6) 0.298
# https://www.eia.gov/electricity/annual/html/epa_a_03.html
return df.multiply(specific_emissions).sum(axis=1)
def build_co2_totals(countries, eea_co2, eurostat_co2):
co2 = eea_co2.reindex(countries)
for ct in countries.intersection(["BA", "RS", "AL", "ME", "MK"]):
mappings = {
"electricity": (ct, "Transformation input", "Electricity & heat generation", "Main"),
"residential non-elec": (ct, "Final energy consumption", "Other sectors", "Households"),
"services non-elec": (ct, "Final energy consumption", "Other sectors", "Commercial & public services"),
"road non-elec": (ct, "Final energy consumption", "Transport sector", "Road"),
"rail non-elec": (ct, "Final energy consumption", "Transport sector", "Rail"),
"domestic navigation": (ct, "Final energy consumption", "Transport sector", "Domestic navigation"),
"international navigation": (ct, "Main", "International maritime bunkers"),
"domestic aviation": (ct, "Final energy consumption", "Transport sector", "Domestic aviation"),
"international aviation": (ct, "Main", "International aviation"),
# does not include industrial process emissions or fuel processing/refining
"industrial non-elec": (ct, "Final energy consumption", "Industry sector", "Non-energy use in industry sector"),
# does not include non-energy emissions
"agriculture": (eurostat_co2.index.get_level_values(0) == ct) & eurostat_co2.index.isin(["Agriculture & forestry", "Fishing"], level=3),
}
for i, mi in mappings.items():
co2.at[ct, i] = eurostat_co2.loc[mi].sum()
return co2
def build_transport_data(countries, population, idees):
transport_data = pd.DataFrame(index=countries)
# collect number of cars
transport_data["number cars"] = idees["passenger cars"]
# CH from http://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU#Luxembourg_has_the_highest_number_of_passenger_cars_per_inhabitant
transport_data.at["CH", "number cars"] = 4.136e6
missing = transport_data.index[transport_data["number cars"].isna()]
print(f"Missing data on cars from:\n{list(missing)}\nFilling gaps with averaged data.")
cars_pp = transport_data["number cars"] / population
transport_data.loc[missing, "number cars"] = cars_pp.mean() * population
# collect average fuel efficiency in kWh/km
transport_data["average fuel efficiency"] = idees["passenger car efficiency"]
missing = transport_data.index[transport_data["average fuel efficiency"].isna()]
print(f"Missing data on fuel efficiency from:\n{list(missing)}\nFilling gapswith averaged data.")
fill_values = transport_data["average fuel efficiency"].mean()
transport_data.loc[missing, "average fuel efficiency"] = fill_values
return transport_data
if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake('build_energy_totals')
config = snakemake.config["energy"]
data_year = int(config["energy_totals_year"])
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("index")
population = nuts3["pop"].groupby(nuts3.country).sum()
countries = population.index
idees_countries = countries.intersection(eu28)
eurostat = build_eurostat(countries.difference(['CH']))
swiss = build_swiss()
idees = build_idees(idees_countries)
energy = build_energy_totals(countries, eurostat, swiss, idees)
energy.to_csv(snakemake.output.energy_name_full)
energy = energy.xs(data_year, level='year')
energy.to_csv(snakemake.output.energy_name)
base_year_emissions = config["base_emissions_year"]
eea_co2 = build_eea_co2(base_year_emissions)
eurostat_co2 = build_eurostat_co2(countries, eurostat, base_year_emissions)
co2 = build_co2_totals(countries, eea_co2, eurostat_co2)
co2.to_csv(snakemake.output.co2_name)
idees_transport = idees.xs(data_year, level='year')
transport = build_transport_data(countries, population, idees_transport)
transport.to_csv(snakemake.output.transport_name)