pypsa-eur/scripts/build_heat_demand.py
2021-04-27 09:54:52 +02:00

43 lines
1.3 KiB
Python

import geopandas as gpd
import atlite
import pandas as pd
import xarray as xr
import scipy as sp
import helper
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
cutout_dir=snakemake.config['atlite']['cutout_dir'],
**params)
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
helper.clean_invalid_geometries(clustered_busregions)
I = cutout.indicatormatrix(clustered_busregions)
for item in ["rural","urban","total"]:
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
heat_demand = cutout.heat_demand(matrix=M.T,index=clustered_busregions.index)
heat_demand.to_netcdf(snakemake.output["heat_demand_"+item])