674 lines
25 KiB
Python
674 lines
25 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Adds existing power and heat generation capacities for initial planning
|
|
horizon.
|
|
"""
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
import pandas as pd
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
from types import SimpleNamespace
|
|
|
|
import country_converter as coco
|
|
import numpy as np
|
|
import pypsa
|
|
import xarray as xr
|
|
from _helpers import override_component_attrs, update_config_with_sector_opts
|
|
from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs
|
|
from add_electricity import add_missing_carrier
|
|
|
|
cc = coco.CountryConverter()
|
|
|
|
spatial = SimpleNamespace()
|
|
|
|
|
|
def add_build_year_to_new_assets(n, baseyear):
|
|
"""
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
baseyear : int
|
|
year in which optimized assets are built
|
|
"""
|
|
# Give assets with lifetimes and no build year the build year baseyear
|
|
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
|
assets = c.df.index[(c.df.lifetime != np.inf) & (c.df.build_year == 0)]
|
|
c.df.loc[assets, "build_year"] = baseyear
|
|
|
|
# add -baseyear to name
|
|
rename = pd.Series(c.df.index, c.df.index)
|
|
rename[assets] += "-" + str(baseyear)
|
|
c.df.rename(index=rename, inplace=True)
|
|
|
|
# rename time-dependent
|
|
selection = n.component_attrs[c.name].type.str.contains(
|
|
"series"
|
|
) & n.component_attrs[c.name].status.str.contains("Input")
|
|
for attr in n.component_attrs[c.name].index[selection]:
|
|
c.pnl[attr].rename(columns=rename, inplace=True)
|
|
|
|
|
|
def add_existing_renewables(df_agg):
|
|
"""
|
|
Append existing renewables to the df_agg pd.DataFrame with the conventional
|
|
power plants.
|
|
"""
|
|
carriers = {"solar": "solar", "onwind": "onwind", "offwind": "offwind-ac"}
|
|
|
|
for tech in ["solar", "onwind", "offwind"]:
|
|
carrier = carriers[tech]
|
|
|
|
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.0)
|
|
df.columns = df.columns.astype(int)
|
|
df.index = cc.convert(df.index, to="iso2")
|
|
|
|
# calculate yearly differences
|
|
df.insert(loc=0, value=0.0, column="1999")
|
|
df = df.diff(axis=1).drop("1999", axis=1).clip(lower=0)
|
|
|
|
# distribute capacities among nodes according to capacity factor
|
|
# weighting with nodal_fraction
|
|
elec_buses = n.buses.index[n.buses.carrier == "AC"].union(
|
|
n.buses.index[n.buses.carrier == "DC"]
|
|
)
|
|
nodal_fraction = pd.Series(0.0, elec_buses)
|
|
|
|
for country in n.buses.loc[elec_buses, "country"].unique():
|
|
gens = n.generators.index[
|
|
(n.generators.index.str[:2] == country)
|
|
& (n.generators.carrier == carrier)
|
|
]
|
|
cfs = n.generators_t.p_max_pu[gens].mean()
|
|
cfs_key = cfs / cfs.sum()
|
|
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.values
|
|
|
|
nodal_df = df.loc[n.buses.loc[elec_buses, "country"]]
|
|
nodal_df.index = elec_buses
|
|
nodal_df = nodal_df.multiply(nodal_fraction, axis=0)
|
|
|
|
for year in nodal_df.columns:
|
|
for node in nodal_df.index:
|
|
name = f"{node}-{tech}-{year}"
|
|
capacity = nodal_df.loc[node, year]
|
|
if capacity > 0.0:
|
|
df_agg.at[name, "Fueltype"] = tech
|
|
df_agg.at[name, "Capacity"] = capacity
|
|
df_agg.at[name, "DateIn"] = year
|
|
df_agg.at[name, "cluster_bus"] = node
|
|
|
|
|
|
def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear):
|
|
"""
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
grouping_years :
|
|
intervals to group existing capacities
|
|
costs :
|
|
to read lifetime to estimate YearDecomissioning
|
|
baseyear : int
|
|
"""
|
|
logger.debug(
|
|
f"Adding power capacities installed before {baseyear} from powerplants.csv"
|
|
)
|
|
|
|
df_agg = pd.read_csv(snakemake.input.powerplants, index_col=0)
|
|
|
|
rename_fuel = {
|
|
"Hard Coal": "coal",
|
|
"Lignite": "lignite",
|
|
"Nuclear": "nuclear",
|
|
"Oil": "oil",
|
|
"OCGT": "OCGT",
|
|
"CCGT": "CCGT",
|
|
"Natural Gas": "gas",
|
|
"Bioenergy": "urban central solid biomass CHP",
|
|
}
|
|
|
|
fueltype_to_drop = [
|
|
"Hydro",
|
|
"Wind",
|
|
"Solar",
|
|
"Geothermal",
|
|
"Waste",
|
|
"Other",
|
|
"CCGT, Thermal",
|
|
]
|
|
|
|
technology_to_drop = ["Pv", "Storage Technologies"]
|
|
|
|
# drop unused fueltyps and technologies
|
|
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
|
|
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
|
|
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
|
|
|
|
# Intermediate fix for DateIn & DateOut
|
|
# Fill missing DateIn
|
|
biomass_i = df_agg.loc[df_agg.Fueltype == "urban central solid biomass CHP"].index
|
|
mean = df_agg.loc[biomass_i, "DateIn"].mean()
|
|
df_agg.loc[biomass_i, "DateIn"] = df_agg.loc[biomass_i, "DateIn"].fillna(int(mean))
|
|
# Fill missing DateOut
|
|
dateout = (
|
|
df_agg.loc[biomass_i, "DateIn"]
|
|
+ snakemake.config["costs"]["fill_values"]["lifetime"]
|
|
)
|
|
df_agg.loc[biomass_i, "DateOut"] = df_agg.loc[biomass_i, "DateOut"].fillna(dateout)
|
|
|
|
# drop assets which are already phased out / decommissioned
|
|
phased_out = df_agg[df_agg["DateOut"] < baseyear].index
|
|
df_agg.drop(phased_out, inplace=True)
|
|
|
|
# calculate remaining lifetime before phase-out (+1 because assuming
|
|
# phase out date at the end of the year)
|
|
df_agg["lifetime"] = df_agg.DateOut - df_agg.DateIn + 1
|
|
|
|
# assign clustered bus
|
|
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
|
|
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
|
|
|
|
inv_busmap = {}
|
|
for k, v in busmap.items():
|
|
inv_busmap[v] = inv_busmap.get(v, []) + [k]
|
|
|
|
clustermaps = busmap_s.map(busmap)
|
|
clustermaps.index = clustermaps.index.astype(int)
|
|
|
|
df_agg["cluster_bus"] = df_agg.bus.map(clustermaps)
|
|
|
|
# include renewables in df_agg
|
|
add_existing_renewables(df_agg)
|
|
|
|
df_agg["grouping_year"] = np.take(
|
|
grouping_years, np.digitize(df_agg.DateIn, grouping_years, right=True)
|
|
)
|
|
|
|
df = df_agg.pivot_table(
|
|
index=["grouping_year", "Fueltype"],
|
|
columns="cluster_bus",
|
|
values="Capacity",
|
|
aggfunc="sum",
|
|
)
|
|
|
|
lifetime = df_agg.pivot_table(
|
|
index=["grouping_year", "Fueltype"],
|
|
columns="cluster_bus",
|
|
values="lifetime",
|
|
aggfunc="mean", # currently taken mean for clustering lifetimes
|
|
)
|
|
|
|
carrier = {
|
|
"OCGT": "gas",
|
|
"CCGT": "gas",
|
|
"coal": "coal",
|
|
"oil": "oil",
|
|
"lignite": "lignite",
|
|
"nuclear": "uranium",
|
|
"urban central solid biomass CHP": "biomass",
|
|
}
|
|
|
|
for grouping_year, generator in df.index:
|
|
# capacity is the capacity in MW at each node for this
|
|
capacity = df.loc[grouping_year, generator]
|
|
capacity = capacity[~capacity.isna()]
|
|
capacity = capacity[
|
|
capacity > snakemake.config["existing_capacities"]["threshold_capacity"]
|
|
]
|
|
suffix = "-ac" if generator == "offwind" else ""
|
|
name_suffix = f" {generator}{suffix}-{grouping_year}"
|
|
asset_i = capacity.index + name_suffix
|
|
if generator in ["solar", "onwind", "offwind"]:
|
|
# to consider electricity grid connection costs or a split between
|
|
# solar utility and rooftop as well, rather take cost assumptions
|
|
# from existing network than from the cost database
|
|
capital_cost = n.generators.loc[
|
|
n.generators.carrier == generator + suffix, "capital_cost"
|
|
].mean()
|
|
marginal_cost = n.generators.loc[
|
|
n.generators.carrier == generator + suffix, "marginal_cost"
|
|
].mean()
|
|
# check if assets are already in network (e.g. for 2020)
|
|
already_build = n.generators.index.intersection(asset_i)
|
|
new_build = asset_i.difference(n.generators.index)
|
|
|
|
# this is for the year 2020
|
|
if not already_build.empty:
|
|
n.generators.loc[already_build, "p_nom_min"] = capacity.loc[
|
|
already_build.str.replace(name_suffix, "")
|
|
].values
|
|
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
|
|
|
|
if "m" in snakemake.wildcards.clusters:
|
|
for ind in new_capacity.index:
|
|
# existing capacities are split evenly among regions in every country
|
|
inv_ind = [i for i in inv_busmap[ind]]
|
|
|
|
# for offshore the splitting only includes coastal regions
|
|
inv_ind = [
|
|
i for i in inv_ind if (i + name_suffix) in n.generators.index
|
|
]
|
|
|
|
p_max_pu = n.generators_t.p_max_pu[
|
|
[i + name_suffix for i in inv_ind]
|
|
]
|
|
p_max_pu.columns = [i + name_suffix for i in inv_ind]
|
|
|
|
n.madd(
|
|
"Generator",
|
|
[i + name_suffix for i in inv_ind],
|
|
bus=ind,
|
|
carrier=generator,
|
|
p_nom=new_capacity[ind]
|
|
/ len(inv_ind), # split among regions in a country
|
|
marginal_cost=marginal_cost,
|
|
capital_cost=capital_cost,
|
|
efficiency=costs.at[generator, "efficiency"],
|
|
p_max_pu=p_max_pu,
|
|
build_year=grouping_year,
|
|
lifetime=costs.at[generator, "lifetime"],
|
|
)
|
|
|
|
else:
|
|
p_max_pu = n.generators_t.p_max_pu[
|
|
capacity.index + f" {generator}{suffix}-{baseyear}"
|
|
]
|
|
|
|
if not new_build.empty:
|
|
n.madd(
|
|
"Generator",
|
|
new_capacity.index,
|
|
suffix=" " + name_suffix,
|
|
bus=new_capacity.index,
|
|
carrier=generator,
|
|
p_nom=new_capacity,
|
|
marginal_cost=marginal_cost,
|
|
capital_cost=capital_cost,
|
|
efficiency=costs.at[generator, "efficiency"],
|
|
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
|
build_year=grouping_year,
|
|
lifetime=costs.at[generator, "lifetime"],
|
|
)
|
|
|
|
else:
|
|
bus0 = vars(spatial)[carrier[generator]].nodes
|
|
if "EU" not in vars(spatial)[carrier[generator]].locations:
|
|
bus0 = bus0.intersection(capacity.index + " gas")
|
|
|
|
already_build = n.links.index.intersection(asset_i)
|
|
new_build = asset_i.difference(n.links.index)
|
|
lifetime_assets = lifetime.loc[grouping_year, generator].dropna()
|
|
|
|
# this is for the year 2020
|
|
if not already_build.empty:
|
|
n.links.loc[already_build, "p_nom_min"] = capacity.loc[
|
|
already_build.str.replace(name_suffix, "")
|
|
].values
|
|
|
|
if not new_build.empty:
|
|
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
|
|
|
|
if generator != "urban central solid biomass CHP":
|
|
n.madd(
|
|
"Link",
|
|
new_capacity.index,
|
|
suffix=name_suffix,
|
|
bus0=bus0,
|
|
bus1=new_capacity.index,
|
|
bus2="co2 atmosphere",
|
|
carrier=generator,
|
|
marginal_cost=costs.at[generator, "efficiency"]
|
|
* costs.at[generator, "VOM"], # NB: VOM is per MWel
|
|
capital_cost=costs.at[generator, "efficiency"]
|
|
* costs.at[generator, "fixed"], # NB: fixed cost is per MWel
|
|
p_nom=new_capacity / costs.at[generator, "efficiency"],
|
|
efficiency=costs.at[generator, "efficiency"],
|
|
efficiency2=costs.at[carrier[generator], "CO2 intensity"],
|
|
build_year=grouping_year,
|
|
lifetime=lifetime_assets.loc[new_capacity.index],
|
|
)
|
|
else:
|
|
key = "central solid biomass CHP"
|
|
n.madd(
|
|
"Link",
|
|
new_capacity.index,
|
|
suffix=name_suffix,
|
|
bus0=spatial.biomass.df.loc[new_capacity.index]["nodes"].values,
|
|
bus1=new_capacity.index,
|
|
bus2=new_capacity.index + " urban central heat",
|
|
carrier=generator,
|
|
p_nom=new_capacity / costs.at[key, "efficiency"],
|
|
capital_cost=costs.at[key, "fixed"]
|
|
* costs.at[key, "efficiency"],
|
|
marginal_cost=costs.at[key, "VOM"],
|
|
efficiency=costs.at[key, "efficiency"],
|
|
build_year=grouping_year,
|
|
efficiency2=costs.at[key, "efficiency-heat"],
|
|
lifetime=lifetime_assets.loc[new_capacity.index],
|
|
)
|
|
# check if existing capacities are larger than technical potential
|
|
existing_large = n.generators[
|
|
n.generators["p_nom_min"] > n.generators["p_nom_max"]
|
|
].index
|
|
if len(existing_large):
|
|
logger.warning(
|
|
f"Existing capacities larger than technical potential for {existing_large},\
|
|
adjust technical potential to existing capacities"
|
|
)
|
|
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
|
existing_large, "p_nom_min"
|
|
]
|
|
|
|
|
|
def add_heating_capacities_installed_before_baseyear(
|
|
n,
|
|
baseyear,
|
|
grouping_years,
|
|
ashp_cop,
|
|
gshp_cop,
|
|
time_dep_hp_cop,
|
|
costs,
|
|
default_lifetime,
|
|
):
|
|
"""
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
baseyear : last year covered in the existing capacities database
|
|
grouping_years : intervals to group existing capacities
|
|
linear decommissioning of heating capacities from 2020 to 2045 is
|
|
currently assumed heating capacities split between residential and
|
|
services proportional to heating load in both 50% capacities
|
|
in rural busess 50% in urban buses
|
|
"""
|
|
logger.debug(f"Adding heating capacities installed before {baseyear}")
|
|
|
|
# Add existing heating capacities, data comes from the study
|
|
# "Mapping and analyses of the current and future (2020 - 2030)
|
|
# heating/cooling fuel deployment (fossil/renewables) "
|
|
# https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1
|
|
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
|
# TODO start from original file
|
|
|
|
# retrieve existing heating capacities
|
|
techs = [
|
|
"gas boiler",
|
|
"oil boiler",
|
|
"resistive heater",
|
|
"air heat pump",
|
|
"ground heat pump",
|
|
]
|
|
df = pd.read_csv(snakemake.input.existing_heating, index_col=0, header=0)
|
|
|
|
# data for Albania, Montenegro and Macedonia not included in database
|
|
df.loc["Albania"] = np.nan
|
|
df.loc["Montenegro"] = np.nan
|
|
df.loc["Macedonia"] = np.nan
|
|
|
|
df.fillna(0.0, inplace=True)
|
|
|
|
# convert GW to MW
|
|
df *= 1e3
|
|
|
|
df.index = cc.convert(df.index, to="iso2")
|
|
|
|
# coal and oil boilers are assimilated to oil boilers
|
|
df["oil boiler"] = df["oil boiler"] + df["coal boiler"]
|
|
df.drop(["coal boiler"], axis=1, inplace=True)
|
|
|
|
# distribute technologies to nodes by population
|
|
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
|
|
|
nodal_df = df.loc[pop_layout.ct]
|
|
nodal_df.index = pop_layout.index
|
|
nodal_df = nodal_df.multiply(pop_layout.fraction, axis=0)
|
|
|
|
# split existing capacities between residential and services
|
|
# proportional to energy demand
|
|
ratio_residential = pd.Series(
|
|
[
|
|
(
|
|
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
|
/ (
|
|
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
|
+ n.loads_t.p_set.sum()[f"{node} services rural heat"]
|
|
)
|
|
)
|
|
for node in nodal_df.index
|
|
],
|
|
index=nodal_df.index,
|
|
)
|
|
|
|
for tech in techs:
|
|
nodal_df["residential " + tech] = nodal_df[tech] * ratio_residential
|
|
nodal_df["services " + tech] = nodal_df[tech] * (1 - ratio_residential)
|
|
|
|
names = [
|
|
"residential rural",
|
|
"services rural",
|
|
"residential urban decentral",
|
|
"services urban decentral",
|
|
"urban central",
|
|
]
|
|
|
|
nodes = {}
|
|
p_nom = {}
|
|
for name in names:
|
|
name_type = "central" if name == "urban central" else "decentral"
|
|
nodes[name] = pd.Index(
|
|
[
|
|
n.buses.at[index, "location"]
|
|
for index in n.buses.index[
|
|
n.buses.index.str.contains(name)
|
|
& n.buses.index.str.contains("heat")
|
|
]
|
|
]
|
|
)
|
|
heat_pump_type = "air" if "urban" in name else "ground"
|
|
heat_type = "residential" if "residential" in name else "services"
|
|
|
|
if name == "urban central":
|
|
p_nom[name] = nodal_df["air heat pump"][nodes[name]]
|
|
else:
|
|
p_nom[name] = nodal_df[f"{heat_type} {heat_pump_type} heat pump"][
|
|
nodes[name]
|
|
]
|
|
|
|
# Add heat pumps
|
|
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
|
|
|
|
cop = {"air": ashp_cop, "ground": gshp_cop}
|
|
|
|
if time_dep_hp_cop:
|
|
efficiency = cop[heat_pump_type][nodes[name]]
|
|
else:
|
|
efficiency = costs.at[costs_name, "efficiency"]
|
|
|
|
for i, grouping_year in enumerate(grouping_years):
|
|
if int(grouping_year) + default_lifetime <= int(baseyear):
|
|
continue
|
|
|
|
# installation is assumed to be linear for the past 25 years (default lifetime)
|
|
ratio = (int(grouping_year) - int(grouping_years[i - 1])) / default_lifetime
|
|
|
|
n.madd(
|
|
"Link",
|
|
nodes[name],
|
|
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
carrier=f"{name} {heat_pump_type} heat pump",
|
|
efficiency=efficiency,
|
|
capital_cost=costs.at[costs_name, "efficiency"]
|
|
* costs.at[costs_name, "fixed"],
|
|
p_nom=p_nom[name] * ratio / costs.at[costs_name, "efficiency"],
|
|
build_year=int(grouping_year),
|
|
lifetime=costs.at[costs_name, "lifetime"],
|
|
)
|
|
|
|
# add resistive heater, gas boilers and oil boilers
|
|
# (50% capacities to rural buses, 50% to urban buses)
|
|
n.madd(
|
|
"Link",
|
|
nodes[name],
|
|
suffix=f" {name} resistive heater-{grouping_year}",
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
carrier=name + " resistive heater",
|
|
efficiency=costs.at[name_type + " resistive heater", "efficiency"],
|
|
capital_cost=costs.at[name_type + " resistive heater", "efficiency"]
|
|
* costs.at[name_type + " resistive heater", "fixed"],
|
|
p_nom=0.5
|
|
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
|
* ratio
|
|
/ costs.at[name_type + " resistive heater", "efficiency"],
|
|
build_year=int(grouping_year),
|
|
lifetime=costs.at[costs_name, "lifetime"],
|
|
)
|
|
|
|
n.madd(
|
|
"Link",
|
|
nodes[name],
|
|
suffix=f" {name} gas boiler-{grouping_year}",
|
|
bus0=spatial.gas.nodes,
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=name + " gas boiler",
|
|
efficiency=costs.at[name_type + " gas boiler", "efficiency"],
|
|
efficiency2=costs.at["gas", "CO2 intensity"],
|
|
capital_cost=costs.at[name_type + " gas boiler", "efficiency"]
|
|
* costs.at[name_type + " gas boiler", "fixed"],
|
|
p_nom=0.5
|
|
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
|
* ratio
|
|
/ costs.at[name_type + " gas boiler", "efficiency"],
|
|
build_year=int(grouping_year),
|
|
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
|
)
|
|
|
|
n.madd(
|
|
"Link",
|
|
nodes[name],
|
|
suffix=f" {name} oil boiler-{grouping_year}",
|
|
bus0=spatial.oil.nodes,
|
|
bus1=nodes[name] + " " + name + " heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=name + " oil boiler",
|
|
efficiency=costs.at["decentral oil boiler", "efficiency"],
|
|
efficiency2=costs.at["oil", "CO2 intensity"],
|
|
capital_cost=costs.at["decentral oil boiler", "efficiency"]
|
|
* costs.at["decentral oil boiler", "fixed"],
|
|
p_nom=0.5
|
|
* nodal_df[f"{heat_type} oil boiler"][nodes[name]]
|
|
* ratio
|
|
/ costs.at["decentral oil boiler", "efficiency"],
|
|
build_year=int(grouping_year),
|
|
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
|
)
|
|
|
|
# delete links with p_nom=nan corresponding to extra nodes in country
|
|
n.mremove(
|
|
"Link",
|
|
[
|
|
index
|
|
for index in n.links.index.to_list()
|
|
if str(grouping_year) in index and np.isnan(n.links.p_nom[index])
|
|
],
|
|
)
|
|
|
|
# delete links with capacities below threshold
|
|
threshold = snakemake.config["existing_capacities"]["threshold_capacity"]
|
|
n.mremove(
|
|
"Link",
|
|
[
|
|
index
|
|
for index in n.links.index.to_list()
|
|
if str(grouping_year) in index and n.links.p_nom[index] < threshold
|
|
],
|
|
)
|
|
|
|
|
|
# %%
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"add_existing_baseyear",
|
|
simpl="",
|
|
clusters="45",
|
|
ll="v1.0",
|
|
opts="",
|
|
sector_opts="8760H-T-H-B-I-A-solar+p3-dist1",
|
|
planning_horizons=2020,
|
|
)
|
|
|
|
logging.basicConfig(level=snakemake.config["logging"]["level"])
|
|
|
|
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
|
|
|
options = snakemake.config["sector"]
|
|
opts = snakemake.wildcards.sector_opts.split("-")
|
|
|
|
baseyear = snakemake.config["scenario"]["planning_horizons"][0]
|
|
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
|
# define spatial resolution of carriers
|
|
spatial = define_spatial(n.buses[n.buses.carrier == "AC"].index, options)
|
|
add_build_year_to_new_assets(n, baseyear)
|
|
|
|
Nyears = n.snapshot_weightings.generators.sum() / 8760.0
|
|
costs = prepare_costs(
|
|
snakemake.input.costs,
|
|
snakemake.config["costs"],
|
|
Nyears,
|
|
)
|
|
|
|
grouping_years_power = snakemake.config["existing_capacities"][
|
|
"grouping_years_power"
|
|
]
|
|
grouping_years_heat = snakemake.config["existing_capacities"]["grouping_years_heat"]
|
|
add_power_capacities_installed_before_baseyear(
|
|
n, grouping_years_power, costs, baseyear
|
|
)
|
|
|
|
if "H" in opts:
|
|
time_dep_hp_cop = options["time_dep_hp_cop"]
|
|
ashp_cop = (
|
|
xr.open_dataarray(snakemake.input.cop_air_total)
|
|
.to_pandas()
|
|
.reindex(index=n.snapshots)
|
|
)
|
|
gshp_cop = (
|
|
xr.open_dataarray(snakemake.input.cop_soil_total)
|
|
.to_pandas()
|
|
.reindex(index=n.snapshots)
|
|
)
|
|
default_lifetime = snakemake.config["costs"]["fill_values"]["lifetime"]
|
|
add_heating_capacities_installed_before_baseyear(
|
|
n,
|
|
baseyear,
|
|
grouping_years_heat,
|
|
ashp_cop,
|
|
gshp_cop,
|
|
time_dep_hp_cop,
|
|
costs,
|
|
default_lifetime,
|
|
)
|
|
|
|
if options.get("cluster_heat_buses", False):
|
|
cluster_heat_buses(n)
|
|
|
|
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
|
|
|
add_missing_carrier(n)
|
|
|
|
n.export_to_netcdf(snakemake.output[0])
|