344 lines
12 KiB
YAML
344 lines
12 KiB
YAML
version: 0.3.0
|
||
|
||
logging_level: INFO
|
||
|
||
results_dir: 'results/'
|
||
summary_dir: results
|
||
costs_dir: '../technology-data/outputs/'
|
||
run: 'your-run-name' # use this to keep track of runs with different settings
|
||
foresight: 'overnight' #options are overnight, myopic, perfect (perfect is not yet implemented)
|
||
|
||
|
||
scenario:
|
||
sectors: [E] # ignore this legacy setting
|
||
simpl: [''] # only relevant for PyPSA-Eur
|
||
lv: [1.0,1.5] # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
|
||
clusters: [45,50] # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
||
opts: [''] # only relevant for PyPSA-Eur
|
||
sector_opts: [Co2L0-3H-T-H-B-I-solar3-dist1] # this is where the main scenario settings are
|
||
# to really understand the options here, look in scripts/prepare_sector_network.py
|
||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||
# single letters are sectors: T for land transport, H for building heating,
|
||
# B for biomass supply, I for industry, shipping and aviation
|
||
# solarx or onwindx changes the available installable potential by factor x
|
||
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
||
planning_horizons : [2030] #investment years for myopic and perfect; or costs year for overnight
|
||
co2_budget_name: ['go'] #gives shape of CO2 budgets over planning horizon
|
||
|
||
# snapshots are originally set in PyPSA-Eur/config.yaml but used again by PyPSA-Eur-Sec
|
||
snapshots:
|
||
# arguments to pd.date_range
|
||
start: "2013-01-01"
|
||
end: "2014-01-01"
|
||
closed: 'left' # end is not inclusive
|
||
|
||
atlite:
|
||
cutout_dir: '../pypsa-eur/cutouts'
|
||
cutout_name: "europe-2013-era5"
|
||
|
||
# this information is NOT used but needed as an argument for
|
||
# pypsa-eur/scripts/add_electricity.py/load_costs in make_summary.py
|
||
electricity:
|
||
max_hours:
|
||
battery: 6
|
||
H2: 168
|
||
|
||
biomass:
|
||
year: 2030
|
||
scenario: "Med"
|
||
classes:
|
||
solid biomass: ['Primary agricultural residues', 'Forestry energy residue', 'Secondary forestry residues', 'Secondary Forestry residues – sawdust', 'Forestry residues from landscape care biomass', 'Municipal waste']
|
||
not included: ['Bioethanol sugar beet biomass', 'Rapeseeds for biodiesel', 'sunflower and soya for Biodiesel', 'Starchy crops biomass', 'Grassy crops biomass', 'Willow biomass', 'Poplar biomass potential', 'Roundwood fuelwood', 'Roundwood Chips & Pellets']
|
||
biogas: ['Manure biomass potential', 'Sludge biomass']
|
||
|
||
# only relevant for foresight = myopic or perfect
|
||
existing_capacities:
|
||
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]
|
||
threshold_capacity: 10
|
||
conventional_carriers: ['lignite', 'coal', 'oil', 'uranium']
|
||
|
||
sector:
|
||
'central' : True
|
||
'central_fraction' : 0.6
|
||
'dsm_restriction_value' : 0.75 #Set to 0 for no restriction on BEV DSM
|
||
'dsm_restriction_time' : 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||
'transport_heating_deadband_upper' : 20.
|
||
'transport_heating_deadband_lower' : 15.
|
||
'ICE_lower_degree_factor' : 0.375 #in per cent increase in fuel consumption per degree above deadband
|
||
'ICE_upper_degree_factor' : 1.6
|
||
'EV_lower_degree_factor' : 0.98
|
||
'EV_upper_degree_factor' : 0.63
|
||
'district_heating_loss' : 0.15
|
||
'bev' : True #turns on EV battery
|
||
'bev_availability' : 0.5 #How many cars do smart charging
|
||
'v2g' : True #allows feed-in to grid from EV battery
|
||
'transport_fuel_cell_share' : 0. #0 means all EVs, 1 means all FCs
|
||
'shipping_average_efficiency' : 0.4 #For conversion of fuel oil to propulsion in 2011
|
||
'time_dep_hp_cop' : True
|
||
'space_heating_fraction' : 1.0 #fraction of space heating active
|
||
'retrofitting' : False
|
||
'retroI-fraction' : 0.25
|
||
'retroII-fraction' : 0.55
|
||
'retrofitting-cost_factor' : 1.0
|
||
'tes' : True
|
||
'tes_tau' : 3.
|
||
'boilers' : True
|
||
'oil_boilers': False
|
||
'chp' : True
|
||
'solar_thermal' : True
|
||
'solar_cf_correction': 0.788457 # = >>> 1/1.2683
|
||
'marginal_cost_storage' : 0. #1e-4
|
||
'methanation' : True
|
||
'helmeth' : True
|
||
'dac' : True
|
||
'co2_vent' : True
|
||
'SMR' : True
|
||
'ccs_fraction' : 0.9
|
||
'hydrogen_underground_storage' : True
|
||
'use_fischer_tropsch_waste_heat' : True
|
||
'use_fuel_cell_waste_heat' : True
|
||
'electricity_distribution_grid' : False
|
||
'electricity_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||
'electricity_grid_connection' : True # only applies to onshore wind and utility PV
|
||
'gas_distribution_grid' : True
|
||
'gas_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||
'biomass_transport': False # biomass potential per country + transport between countries
|
||
|
||
costs:
|
||
year: 2030
|
||
lifetime: 25 #default lifetime
|
||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||
discountrate: 0.07
|
||
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
|
||
USD2013_to_EUR2013: 0.7532
|
||
|
||
# Marginal and capital costs can be overwritten
|
||
# capital_cost:
|
||
# Wind: Bla
|
||
marginal_cost: #
|
||
solar: 0.01
|
||
onwind: 0.015
|
||
offwind: 0.015
|
||
hydro: 0.
|
||
H2: 0.
|
||
battery: 0.
|
||
|
||
emission_prices: # only used with the option Ep (emission prices)
|
||
co2: 0.
|
||
|
||
lines:
|
||
length_factor: 1.25 #to estimate offwind connection costs
|
||
|
||
|
||
solving:
|
||
#tmpdir: "path/to/tmp"
|
||
options:
|
||
formulation: kirchhoff
|
||
clip_p_max_pu: 1.e-2
|
||
load_shedding: false
|
||
noisy_costs: true
|
||
|
||
min_iterations: 1
|
||
max_iterations: 1
|
||
# nhours: 1
|
||
|
||
solver:
|
||
name: gurobi
|
||
threads: 4
|
||
method: 2 # barrier
|
||
crossover: 0
|
||
BarConvTol: 1.e-5
|
||
Seed: 123
|
||
AggFill: 0
|
||
PreDual: 0
|
||
GURO_PAR_BARDENSETHRESH: 200
|
||
#FeasibilityTol: 1.e-6
|
||
|
||
#name: cplex
|
||
#threads: 4
|
||
#lpmethod: 4 # barrier
|
||
#solutiontype: 2 # non basic solution, ie no crossover
|
||
#barrier_convergetol: 1.e-5
|
||
#feasopt_tolerance: 1.e-6
|
||
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
|
||
|
||
industry:
|
||
'St_primary_fraction' : 0.3 # fraction of steel produced via primary route (DRI + EAF) versus secondary route (EAF); today fraction is 0.6
|
||
'H2_DRI' : 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||
'elec_DRI' : 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||
'Al_primary_fraction' : 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||
'MWh_CH4_per_tNH3_SMR' : 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||
'MWh_elec_per_tNH3_SMR' : 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||
'MWh_H2_per_tNH3_electrolysis' : 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||
'MWh_elec_per_tNH3_electrolysis' : 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||
'NH3_process_emissions' : 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||
'petrochemical_process_emissions' : 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||
|
||
plotting:
|
||
map:
|
||
figsize: [7, 7]
|
||
boundaries: [-10.2, 29, 35, 72]
|
||
p_nom:
|
||
bus_size_factor: 5.e+4
|
||
linewidth_factor: 3.e+3 # 1.e+3 #3.e+3
|
||
|
||
costs_max: 1200
|
||
costs_threshold: 1
|
||
|
||
|
||
energy_max: 20000.
|
||
energy_min: -15000.
|
||
energy_threshold: 50.
|
||
|
||
|
||
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
||
renewable_storage_techs: ["PHS","hydro"]
|
||
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
||
storage_techs: ["hydro+PHS", "battery", "H2"]
|
||
# store_techs: ["Li ion", "water tanks"]
|
||
load_carriers: ["AC load"] #, "heat load", "Li ion load"]
|
||
AC_carriers: ["AC line", "AC transformer"]
|
||
link_carriers: ["DC line", "Converter AC-DC"]
|
||
heat_links: ["heat pump", "resistive heater", "CHP heat", "CHP electric",
|
||
"gas boiler", "central heat pump", "central resistive heater", "central CHP heat",
|
||
"central CHP electric", "central gas boiler"]
|
||
heat_generators: ["gas boiler", "central gas boiler", "solar thermal collector", "central solar thermal collector"]
|
||
tech_colors:
|
||
"onwind" : "b"
|
||
"onshore wind" : "b"
|
||
'offwind' : "c"
|
||
'offshore wind' : "c"
|
||
'offwind-ac' : "c"
|
||
'offshore wind (AC)' : "c"
|
||
'offwind-dc' : "#009999"
|
||
'offshore wind (DC)' : "#009999"
|
||
'wave' : "#004444"
|
||
"hydro" : "#3B5323"
|
||
"hydro reservoir" : "#3B5323"
|
||
"ror" : "#78AB46"
|
||
"run of river" : "#78AB46"
|
||
'hydroelectricity' : '#006400'
|
||
'solar' : "y"
|
||
'solar PV' : "y"
|
||
'solar thermal' : 'coral'
|
||
'solar rooftop' : '#e6b800'
|
||
"OCGT" : "wheat"
|
||
"OCGT marginal" : "sandybrown"
|
||
"OCGT-heat" : "orange"
|
||
"gas boiler" : "orange"
|
||
"gas boilers" : "orange"
|
||
"gas boiler marginal" : "orange"
|
||
"gas-to-power/heat" : "orange"
|
||
"gas" : "brown"
|
||
"natural gas" : "brown"
|
||
"SMR" : "#4F4F2F"
|
||
"oil" : "#B5A642"
|
||
"oil boiler" : "#B5A677"
|
||
"lines" : "k"
|
||
"transmission lines" : "k"
|
||
"H2" : "m"
|
||
"hydrogen storage" : "m"
|
||
"battery" : "slategray"
|
||
"battery storage" : "slategray"
|
||
"home battery" : "#614700"
|
||
"home battery storage" : "#614700"
|
||
"Nuclear" : "r"
|
||
"Nuclear marginal" : "r"
|
||
"nuclear" : "r"
|
||
"uranium" : "r"
|
||
"Coal" : "k"
|
||
"coal" : "k"
|
||
"Coal marginal" : "k"
|
||
"Lignite" : "grey"
|
||
"lignite" : "grey"
|
||
"Lignite marginal" : "grey"
|
||
"CCGT" : "orange"
|
||
"CCGT marginal" : "orange"
|
||
"heat pumps" : "#76EE00"
|
||
"heat pump" : "#76EE00"
|
||
"air heat pump" : "#76EE00"
|
||
"ground heat pump" : "#40AA00"
|
||
"power-to-heat" : "#40AA00"
|
||
"resistive heater" : "pink"
|
||
"Sabatier" : "#FF1493"
|
||
"methanation" : "#FF1493"
|
||
"power-to-gas" : "#FF1493"
|
||
"power-to-liquid" : "#FFAAE9"
|
||
"helmeth" : "#7D0552"
|
||
"helmeth" : "#7D0552"
|
||
"DAC" : "#E74C3C"
|
||
"co2 stored" : "#123456"
|
||
"CO2 sequestration" : "#123456"
|
||
"CCS" : "k"
|
||
"co2" : "#123456"
|
||
"co2 vent" : "#654321"
|
||
"solid biomass for industry co2 from atmosphere" : "#654321"
|
||
"solid biomass for industry co2 to stored": "#654321"
|
||
"gas for industry co2 to atmosphere": "#654321"
|
||
"gas for industry co2 to stored": "#654321"
|
||
"Fischer-Tropsch" : "#44DD33"
|
||
"kerosene for aviation": "#44BB11"
|
||
"naphtha for industry" : "#44FF55"
|
||
"water tanks" : "#BBBBBB"
|
||
"hot water storage" : "#BBBBBB"
|
||
"hot water charging" : "#BBBBBB"
|
||
"hot water discharging" : "#999999"
|
||
"CHP" : "r"
|
||
"CHP heat" : "r"
|
||
"CHP electric" : "r"
|
||
"PHS" : "g"
|
||
"Ambient" : "k"
|
||
"Electric load" : "b"
|
||
"Heat load" : "r"
|
||
"Transport load" : "grey"
|
||
"heat" : "darkred"
|
||
"rural heat" : "#880000"
|
||
"central heat" : "#b22222"
|
||
"decentral heat" : "#800000"
|
||
"low-temperature heat for industry" : "#991111"
|
||
"process heat" : "#FF3333"
|
||
"heat demand" : "darkred"
|
||
"electric demand" : "k"
|
||
"Li ion" : "grey"
|
||
"district heating" : "#CC4E5C"
|
||
"retrofitting" : "purple"
|
||
"building retrofitting" : "purple"
|
||
"BEV charger" : "grey"
|
||
"V2G" : "grey"
|
||
"transport" : "grey"
|
||
"electricity" : "k"
|
||
"gas for industry" : "#333333"
|
||
"solid biomass for industry" : "#555555"
|
||
"industry new electricity" : "#222222"
|
||
"process emissions to stored" : "#444444"
|
||
"process emissions to atmosphere" : "#888888"
|
||
"process emissions" : "#222222"
|
||
"transport fuel cell" : "#AAAAAA"
|
||
"biogas" : "#800000"
|
||
"solid biomass" : "#DAA520"
|
||
"today" : "#D2691E"
|
||
"shipping" : "#6495ED"
|
||
"electricity distribution grid" : "#333333"
|
||
'industry electricity': "black"
|
||
"solid biomass transport": "green"
|
||
nice_names:
|
||
# OCGT: "Gas"
|
||
# OCGT marginal: "Gas (marginal)"
|
||
offwind: "offshore wind"
|
||
onwind: "onshore wind"
|
||
battery: "Battery storage"
|
||
lines: "Transmission lines"
|
||
AC line: "AC lines"
|
||
AC-AC: "DC lines"
|
||
ror: "Run of river"
|
||
nice_names_n:
|
||
offwind: "offshore\nwind"
|
||
onwind: "onshore\nwind"
|
||
# OCGT: "Gas"
|
||
H2: "Hydrogen\nstorage"
|
||
# OCGT marginal: "Gas (marginal)"
|
||
lines: "transmission\nlines"
|
||
ror: "run of river"
|