pypsa-eur/scripts/build_country_flh.py
Fabian Neumann 5ea29551b9
add REUSE.software license information (#160)
* add REUSE.software license information

* add release note on licensing

* Update doc/index.rst

Co-authored-by: euronion <42553970+euronion@users.noreply.github.com>

* Update doc/index.rst

Co-authored-by: euronion <42553970+euronion@users.noreply.github.com>

* Update doc/release_notes.rst [skip travis]

Co-authored-by: euronion <42553970+euronion@users.noreply.github.com>
2020-05-29 09:50:55 +02:00

241 lines
9.2 KiB
Python

#!/usr/bin/env python
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""
Create ``.csv`` files and plots for comparing per country full load hours of renewable time series.
Relevant Settings
-----------------
.. code:: yaml
snapshots:
renewable:
{technology}:
cutout:
resource:
correction_factor:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`snapshots_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
.. image:: img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
.. image:: img/gebco_2019_grid_image.jpg
:scale: 50 %
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
- ``data/pietzker2014.xlsx``: `Supplementary material 2 <https://ars.els-cdn.com/content/image/1-s2.0-S0306261914008149-mmc2.xlsx>`_ from `Pietzcker et al. <https://doi.org/10.1016/j.apenergy.2014.08.011>`_; not part of the data bundle; download and place here yourself.
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
- ``resources/country_flh_area_{technology}.csv``:
- ``resources/country_flh_aggregated_{technology}.csv``:
- ``resources/country_flh_uncorrected_{technology}.csv``:
- ``resources/country_flh_{technology}.pdf``:
- ``resources/country_exclusion_{technology}``:
Description
-----------
"""
import logging
logger = logging.getLogger(__name__)
from _helpers import configure_logging
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import geokit as gk
from scipy.sparse import vstack
import pycountry as pyc
import matplotlib.pyplot as plt
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
from build_renewable_profiles import init_globals, calculate_potential
def build_area(flh, countries, areamatrix, breaks, fn):
area_unbinned = xr.DataArray(areamatrix.todense(), [countries, capacity_factor.coords['spatial']])
bins = xr.DataArray(pd.cut(flh.to_series(), bins=breaks), flh.coords, name="bins")
area = area_unbinned.groupby(bins).sum(dim="spatial").to_pandas()
area.loc[:,slice(*area.sum()[lambda s: s > 0].index[[0,-1]])].to_csv(fn)
area.columns = area.columns.map(lambda s: s.left)
return area
def plot_area_not_solar(area, countries):
# onshore wind/offshore wind
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True)
for c, ax in zip(countries, axes):
d = a[[c]] / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def plot_area_solar(area, p_area, countries):
# onshore wind/offshore wind
p = p_area.T
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True, squeeze=False)
for c, ax in zip(countries, axes.flat):
d = pd.concat([a[c], p[c]], keys=['PyPSA-Eur', 'Pietzker'], axis=1) / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
# ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def build_aggregate(flh, countries, areamatrix, breaks, p_area, fn):
agg_a = pd.Series(np.ravel((areamatrix / areamatrix.sum(axis=1)).dot(flh.values)),
countries, name="PyPSA-Eur")
if p_area is None:
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
agg = pd.DataFrame({'PyPSA-Eur': agg_a})
else:
# Determine indices of countries which are also in Pietzcker
inds = pd.Index(countries).get_indexer(p_area.index)
areamatrix = areamatrix[inds]
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
midpoints = (breaks[1:] + breaks[:-1])/2.
p = p_area.T
# Per-country FLH comparison
agg_p = pd.Series((p / p.sum()).multiply(midpoints, axis=0).sum(), name="Pietzker")
agg_p['Overall'] = float((p.sum(axis=1) / p.sum().sum()).multiply(midpoints, axis=0).sum())
agg = pd.DataFrame({'PyPSA-Eur': agg_a, 'Pietzcker': agg_p, 'Ratio': agg_p / agg_a})
agg.to_csv(fn)
if __name__ == '__main__':
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_country_flh', technology='solar')
configure_logging(snakemake)
pgb.streams.wrap_stderr()
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds = gk.Extent.from_xXyY((minx - dx/2., maxx + dx/2.,
miny - dy/2., maxy + dy/2.))
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
init_globals(bounds.xXyY, dx, dy, config, paths)
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
countries = pd.Index(regions["name"], name="country")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(countries))
if not os.path.isdir(snakemake.output.exclusion):
os.makedirs(snakemake.output.exclusion)
matrix = vstack([calculate_potential(i, save_map=os.path.join(snakemake.output.exclusion, countries[i]))
for i in progressbar(regions.index)])
areamatrix = matrix * spdiag(vlanduse._cutout_cell_areas(cutout).ravel())
areamatrix.data[areamatrix.data < 1.] = 0 # ignore weather cells where only less than 1 km^2 can be installed
areamatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
capacity_factor = func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x'))
flh_uncorr = capacity_factor * 8760
flh_corr = correction_factor * flh_uncorr
if snakemake.wildcards.technology == 'solar':
pietzcker = pd.read_excel(snakemake.input.pietzker, sheet_name="PV on all area", skiprows=2, header=[0,1]).iloc[1:177]
p_area1_50 = pietzcker['Usable Area at given FLh in 1-50km distance to settlement '].dropna(axis=1)
p_area1_50.columns = p_area1_50.columns.str.split(' ').str[0]
p_area50_100 = pietzcker['Usable Area at given FLh in 50-100km distance to settlement ']
p_area = p_area1_50 + p_area50_100
cols = p_area.columns
breaks = cols.str.split('-').str[0].append(pd.Index([cols[-1].split('-')[1]])).astype(int)
p_area.columns = breaks[:-1]
p_area = p_area.reindex(countries.map(lambda c: pyc.countries.get(alpha_2=c).name))
p_area.index = countries
p_area = p_area.dropna() # Pietzcker does not have data for CZ and MK
else:
breaks = np.r_[0:8000:50]
p_area = None
area = build_area(flh_corr, countries, areamatrix, breaks, snakemake.output.area)
if snakemake.wildcards.technology == 'solar':
plot_area_solar(area, p_area, p_area.index)
else:
plot_area_not_solar(area, countries)
build_aggregate(flh_uncorr, countries, areamatrix, breaks, p_area, snakemake.output.uncorrected)
build_aggregate(flh_corr, countries, areamatrix, breaks, p_area, snakemake.output.aggregated)