pypsa-eur/scripts/_helpers.py
2021-09-14 16:37:41 +02:00

266 lines
9.3 KiB
Python

# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
import pandas as pd
from pathlib import Path
def configure_logging(snakemake, skip_handlers=False):
"""
Configure the basic behaviour for the logging module.
Note: Must only be called once from the __main__ section of a script.
The setup includes printing log messages to STDERR and to a log file defined
by either (in priority order): snakemake.log.python, snakemake.log[0] or "logs/{rulename}.log".
Additional keywords from logging.basicConfig are accepted via the snakemake configuration
file under snakemake.config.logging.
Parameters
----------
snakemake : snakemake object
Your snakemake object containing a snakemake.config and snakemake.log.
skip_handlers : True | False (default)
Do (not) skip the default handlers created for redirecting output to STDERR and file.
"""
import logging
kwargs = snakemake.config.get('logging', dict())
kwargs.setdefault("level", "INFO")
if skip_handlers is False:
fallback_path = Path(__file__).parent.joinpath('..', 'logs', f"{snakemake.rule}.log")
logfile = snakemake.log.get('python', snakemake.log[0] if snakemake.log
else fallback_path)
kwargs.update(
{'handlers': [
# Prefer the 'python' log, otherwise take the first log for each
# Snakemake rule
logging.FileHandler(logfile),
logging.StreamHandler()
]
})
logging.basicConfig(**kwargs)
def load_network(import_name=None, custom_components=None):
"""
Helper for importing a pypsa.Network with additional custom components.
Parameters
----------
import_name : str
As in pypsa.Network(import_name)
custom_components : dict
Dictionary listing custom components.
For using ``snakemake.config['override_components']``
in ``config.yaml`` define:
.. code:: yaml
override_components:
ShadowPrice:
component: ["shadow_prices","Shadow price for a global constraint.",np.nan]
attributes:
name: ["string","n/a","n/a","Unique name","Input (required)"]
value: ["float","n/a",0.,"shadow value","Output"]
Returns
-------
pypsa.Network
"""
import pypsa
from pypsa.descriptors import Dict
override_components = None
override_component_attrs = None
if custom_components is not None:
override_components = pypsa.components.components.copy()
override_component_attrs = Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
for k, v in custom_components.items():
override_components.loc[k] = v['component']
override_component_attrs[k] = pd.DataFrame(columns = ["type","unit","default","description","status"])
for attr, val in v['attributes'].items():
override_component_attrs[k].loc[attr] = val
return pypsa.Network(import_name=import_name,
override_components=override_components,
override_component_attrs=override_component_attrs)
def pdbcast(v, h):
return pd.DataFrame(v.values.reshape((-1, 1)) * h.values,
index=v.index, columns=h.index)
def load_network_for_plots(fn, tech_costs, config, combine_hydro_ps=True):
import pypsa
from add_electricity import update_transmission_costs, load_costs
n = pypsa.Network(fn)
n.loads["carrier"] = n.loads.bus.map(n.buses.carrier) + " load"
n.stores["carrier"] = n.stores.bus.map(n.buses.carrier)
n.links["carrier"] = (n.links.bus0.map(n.buses.carrier) + "-" + n.links.bus1.map(n.buses.carrier))
n.lines["carrier"] = "AC line"
n.transformers["carrier"] = "AC transformer"
n.lines['s_nom'] = n.lines['s_nom_min']
n.links['p_nom'] = n.links['p_nom_min']
if combine_hydro_ps:
n.storage_units.loc[n.storage_units.carrier.isin({'PHS', 'hydro'}), 'carrier'] = 'hydro+PHS'
# if the carrier was not set on the heat storage units
# bus_carrier = n.storage_units.bus.map(n.buses.carrier)
# n.storage_units.loc[bus_carrier == "heat","carrier"] = "water tanks"
Nyears = n.snapshot_weightings.objective.sum() / 8760.
costs = load_costs(Nyears, tech_costs, config['costs'], config['electricity'])
update_transmission_costs(n, costs)
return n
def update_p_nom_max(n):
# if extendable carriers (solar/onwind/...) have capacity >= 0,
# e.g. existing assets from the OPSD project are included to the network,
# the installed capacity might exceed the expansion limit.
# Hence, we update the assumptions.
n.generators.p_nom_max = n.generators[['p_nom_min', 'p_nom_max']].max(1)
def aggregate_p_nom(n):
return pd.concat([
n.generators.groupby("carrier").p_nom_opt.sum(),
n.storage_units.groupby("carrier").p_nom_opt.sum(),
n.links.groupby("carrier").p_nom_opt.sum(),
n.loads_t.p.groupby(n.loads.carrier,axis=1).sum().mean()
])
def aggregate_p(n):
return pd.concat([
n.generators_t.p.sum().groupby(n.generators.carrier).sum(),
n.storage_units_t.p.sum().groupby(n.storage_units.carrier).sum(),
n.stores_t.p.sum().groupby(n.stores.carrier).sum(),
-n.loads_t.p.sum().groupby(n.loads.carrier).sum()
])
def aggregate_e_nom(n):
return pd.concat([
(n.storage_units["p_nom_opt"]*n.storage_units["max_hours"]).groupby(n.storage_units["carrier"]).sum(),
n.stores["e_nom_opt"].groupby(n.stores.carrier).sum()
])
def aggregate_p_curtailed(n):
return pd.concat([
((n.generators_t.p_max_pu.sum().multiply(n.generators.p_nom_opt) - n.generators_t.p.sum())
.groupby(n.generators.carrier).sum()),
((n.storage_units_t.inflow.sum() - n.storage_units_t.p.sum())
.groupby(n.storage_units.carrier).sum())
])
def aggregate_costs(n, flatten=False, opts=None, existing_only=False):
components = dict(Link=("p_nom", "p0"),
Generator=("p_nom", "p"),
StorageUnit=("p_nom", "p"),
Store=("e_nom", "p"),
Line=("s_nom", None),
Transformer=("s_nom", None))
costs = {}
for c, (p_nom, p_attr) in zip(
n.iterate_components(components.keys(), skip_empty=False),
components.values()
):
if c.df.empty: continue
if not existing_only: p_nom += "_opt"
costs[(c.list_name, 'capital')] = (c.df[p_nom] * c.df.capital_cost).groupby(c.df.carrier).sum()
if p_attr is not None:
p = c.pnl[p_attr].sum()
if c.name == 'StorageUnit':
p = p.loc[p > 0]
costs[(c.list_name, 'marginal')] = (p*c.df.marginal_cost).groupby(c.df.carrier).sum()
costs = pd.concat(costs)
if flatten:
assert opts is not None
conv_techs = opts['conv_techs']
costs = costs.reset_index(level=0, drop=True)
costs = costs['capital'].add(
costs['marginal'].rename({t: t + ' marginal' for t in conv_techs}),
fill_value=0.
)
return costs
def progress_retrieve(url, file):
import urllib
from progressbar import ProgressBar
pbar = ProgressBar(0, 100)
def dlProgress(count, blockSize, totalSize):
pbar.update( int(count * blockSize * 100 / totalSize) )
urllib.request.urlretrieve(url, file, reporthook=dlProgress)
def mock_snakemake(rulename, **wildcards):
"""
This function is expected to be executed from the 'scripts'-directory of '
the snakemake project. It returns a snakemake.script.Snakemake object,
based on the Snakefile.
If a rule has wildcards, you have to specify them in **wildcards.
Parameters
----------
rulename: str
name of the rule for which the snakemake object should be generated
**wildcards:
keyword arguments fixing the wildcards. Only necessary if wildcards are
needed.
"""
import snakemake as sm
import os
from pypsa.descriptors import Dict
from snakemake.script import Snakemake
script_dir = Path(__file__).parent.resolve()
assert Path.cwd().resolve() == script_dir, \
f'mock_snakemake has to be run from the repository scripts directory {script_dir}'
os.chdir(script_dir.parent)
for p in sm.SNAKEFILE_CHOICES:
if os.path.exists(p):
snakefile = p
break
workflow = sm.Workflow(snakefile)
workflow.include(snakefile)
workflow.global_resources = {}
rule = workflow.get_rule(rulename)
dag = sm.dag.DAG(workflow, rules=[rule])
wc = Dict(wildcards)
job = sm.jobs.Job(rule, dag, wc)
def make_accessable(*ios):
for io in ios:
for i in range(len(io)):
io[i] = os.path.abspath(io[i])
make_accessable(job.input, job.output, job.log)
snakemake = Snakemake(job.input, job.output, job.params, job.wildcards,
job.threads, job.resources, job.log,
job.dag.workflow.config, job.rule.name, None,)
# create log and output dir if not existent
for path in list(snakemake.log) + list(snakemake.output):
Path(path).parent.mkdir(parents=True, exist_ok=True)
os.chdir(script_dir)
return snakemake