pypsa-eur/scripts/plot_network.py

546 lines
19 KiB
Python

import cartopy.crs as ccrs
from matplotlib.legend_handler import HandlerPatch
from matplotlib.patches import Circle, Ellipse
from make_summary import assign_carriers
from plot_summary import rename_techs, preferred_order
import numpy as np
import pypsa
import matplotlib.pyplot as plt
import pandas as pd
# allow plotting without Xwindows
import matplotlib
matplotlib.use('Agg')
# from sector/scripts/paper_graphics-co2_sweep.py
override_component_attrs = pypsa.descriptors.Dict(
{k: v.copy() for k, v in pypsa.components.component_attrs.items()})
override_component_attrs["Link"].loc["bus2"] = [
"string", np.nan, np.nan, "2nd bus", "Input (optional)"]
override_component_attrs["Link"].loc["bus3"] = [
"string", np.nan, np.nan, "3rd bus", "Input (optional)"]
override_component_attrs["Link"].loc["efficiency2"] = [
"static or series", "per unit", 1., "2nd bus efficiency", "Input (optional)"]
override_component_attrs["Link"].loc["efficiency3"] = [
"static or series", "per unit", 1., "3rd bus efficiency", "Input (optional)"]
override_component_attrs["Link"].loc["p2"] = [
"series", "MW", 0., "2nd bus output", "Output"]
override_component_attrs["Link"].loc["p3"] = [
"series", "MW", 0., "3rd bus output", "Output"]
override_component_attrs["StorageUnit"].loc["p_dispatch"] = [
"series", "MW", 0., "Storage discharging.", "Output"]
override_component_attrs["StorageUnit"].loc["p_store"] = [
"series", "MW", 0., "Storage charging.", "Output"]
# ----------------- PLOT HELPERS ---------------------------------------------
def rename_techs_tyndp(tech):
tech = rename_techs(tech)
if "heat pump" in tech or "resistive heater" in tech:
return "power-to-heat"
elif tech in ["methanation", "hydrogen storage", "helmeth"]:
return "power-to-gas"
elif tech in ["OCGT", "CHP", "gas boiler"]:
return "gas-to-power/heat"
elif "solar" in tech:
return "solar"
elif tech == "Fischer-Tropsch":
return "power-to-liquid"
elif "offshore wind" in tech:
return "offshore wind"
else:
return tech
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
fig = ax.get_figure()
def axes2pt():
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[
0] * (72. / fig.dpi)
ellipses = []
if not dont_resize_actively:
def update_width_height(event):
dist = axes2pt()
for e, radius in ellipses:
e.width, e.height = 2. * radius * dist
fig.canvas.mpl_connect('resize_event', update_width_height)
ax.callbacks.connect('xlim_changed', update_width_height)
ax.callbacks.connect('ylim_changed', update_width_height)
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
width, height, fontsize):
w, h = 2. * orig_handle.get_radius() * axes2pt()
e = Ellipse(xy=(0.5 * width - 0.5 * xdescent, 0.5 *
height - 0.5 * ydescent), width=w, height=w)
ellipses.append((e, orig_handle.get_radius()))
return e
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0, 0), radius=(s / scale)**0.5, **kw) for s in sizes]
def assign_location(n):
for c in n.iterate_components(n.one_port_components | n.branch_components):
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
for i in ifind.value_counts().index:
# these have already been assigned defaults
if i == -1:
continue
names = ifind.index[ifind == i]
c.df.loc[names, 'location'] = names.str[:i]
# ----------------- PLOT FUNCTIONS --------------------------------------------
def plot_map(network, components=["links", "stores", "storage_units", "generators"],
bus_size_factor=1.7e10, transmission=False):
n = network.copy()
assign_location(n)
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
costs = pd.DataFrame(index=n.buses.index)
for comp in components:
df_c = getattr(n, comp)
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
costs_c = ((df_c.capital_cost * df_c[attr])
.groupby([df_c.location, df_c.nice_group]).sum()
.unstack().fillna(0.))
costs = pd.concat([costs, costs_c], axis=1)
print(comp, costs)
costs = costs.groupby(costs.columns, axis=1).sum()
costs.drop(list(costs.columns[(costs == 0.).all()]), axis=1, inplace=True)
new_columns = ((preferred_order & costs.columns)
.append(costs.columns.difference(preferred_order)))
costs = costs[new_columns]
for item in new_columns:
if item not in snakemake.config['plotting']['tech_colors']:
print("Warning!",item,"not in config/plotting/tech_colors")
costs = costs.stack() # .sort_index()
# hack because impossible to drop buses...
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
n.links.drop(n.links.index[(n.links.carrier != "DC") & (
n.links.carrier != "B2B")], inplace=True)
# drop non-bus
to_drop = costs.index.levels[0] ^ n.buses.index
if len(to_drop) != 0:
print("dropping non-buses", to_drop)
costs.drop(to_drop, level=0, inplace=True, axis=0)
# make sure they are removed from index
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
# PDF has minimum width, so set these to zero
line_lower_threshold = 500.
line_upper_threshold = 1e4
linewidth_factor = 2e3
ac_color = "gray"
dc_color = "m"
if snakemake.wildcards["lv"] == "1.0":
# should be zero
line_widths = n.lines.s_nom_opt - n.lines.s_nom
link_widths = n.links.p_nom_opt - n.links.p_nom
title = "Transmission reinforcement"
if transmission:
line_widths = n.lines.s_nom_opt
link_widths = n.links.p_nom_opt
linewidth_factor = 2e3
line_lower_threshold = 0.
title = "Today's transmission"
else:
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
link_widths = n.links.p_nom_opt - n.links.p_nom_min
title = "Transmission reinforcement"
if transmission:
line_widths = n.lines.s_nom_opt
link_widths = n.links.p_nom_opt
title = "Total transmission"
line_widths[line_widths < line_lower_threshold] = 0.
link_widths[link_widths < line_lower_threshold] = 0.
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=costs / bus_size_factor,
bus_colors=snakemake.config['plotting']['tech_colors'],
line_colors=ac_color,
link_colors=dc_color,
line_widths=line_widths / linewidth_factor,
link_widths=link_widths / linewidth_factor,
ax=ax, boundaries=(-10, 30, 34, 70),
color_geomap={'ocean': 'lightblue', 'land': "palegoldenrod"})
handles = make_legend_circles_for(
[5e9, 1e9], scale=bus_size_factor, facecolor="gray")
labels = ["{} bEUR/a".format(s) for s in (5, 1)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='System cost',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0], [0], color=ac_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title=title)
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map, transparent=True,
bbox_inches="tight")
def plot_h2_map(network):
n = network.copy()
if "H2 pipeline" not in n.links.carrier.unique():
return
assign_location(n)
bus_size_factor = 1e5
linewidth_factor = 1e4
# MW below which not drawn
line_lower_threshold = 1e3
bus_color = "m"
link_color = "c"
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
elec = n.links.index[n.links.carrier == "H2 Electrolysis"]
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby(n.links.loc[elec,"bus0"]).sum() / bus_size_factor
# make a fake MultiIndex so that area is correct for legend
bus_sizes.index = pd.MultiIndex.from_product(
[bus_sizes.index, ["electrolysis"]])
n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True)
link_widths = n.links.p_nom_opt / linewidth_factor
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
print(link_widths.sort_values())
print(n.links[["bus0", "bus1"]])
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"electrolysis": bus_color},
link_colors=link_color,
link_widths=link_widths,
branch_components=["Link"],
ax=ax, boundaries=(-10, 30, 34, 70))
handles = make_legend_circles_for(
[50000, 10000], scale=bus_size_factor, facecolor=bus_color)
labels = ["{} GW".format(s) for s in (50, 10)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='Electrolyzer capacity',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (50, 10):
handles.append(plt.Line2D([0], [0], color=link_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='H2 pipeline capacity')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map.replace("-costs-all","-h2_network"), transparent=True,
bbox_inches="tight")
def plot_map_without(network):
n = network.copy()
assign_location(n)
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
# PDF has minimum width, so set these to zero
line_lower_threshold = 0.
line_upper_threshold = 1e4
linewidth_factor = 2e3
ac_color = "gray"
dc_color = "m"
# hack because impossible to drop buses...
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
n.links.drop(n.links.index[(n.links.carrier != "DC") & (
n.links.carrier != "B2B")], inplace=True)
if snakemake.wildcards["lv"] == "1.0":
line_widths = n.lines.s_nom
link_widths = n.links.p_nom
else:
line_widths = n.lines.s_nom_min
link_widths = n.links.p_nom_min
line_widths[line_widths < line_upper_threshold] = 0.
link_widths[link_widths < line_upper_threshold] = 0.
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
n.plot(bus_sizes=10,
bus_colors="k",
line_colors=ac_color,
link_colors=dc_color,
line_widths=line_widths / linewidth_factor,
link_widths=link_widths / linewidth_factor,
ax=ax, boundaries=(-10, 30, 34, 70))
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0], [0], color=ac_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.05, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='Today\'s transmission')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.today, transparent=True, bbox_inches="tight")
def plot_series(network, carrier="AC", name="test"):
n = network.copy()
assign_location(n)
assign_carriers(n)
buses = n.buses.index[n.buses.carrier.str.contains(carrier)]
supply = pd.DataFrame(index=n.snapshots)
for c in n.iterate_components(n.branch_components):
for i in range(2):
supply = pd.concat((supply,
(-1) * c.pnl["p" + str(i)].loc[:,
c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier,
axis=1).sum()),
axis=1)
for c in n.iterate_components(n.one_port_components):
comps = c.df.index[c.df.bus.isin(buses)]
supply = pd.concat((supply, ((c.pnl["p"].loc[:, comps]).multiply(
c.df.loc[comps, "sign"])).groupby(c.df.carrier, axis=1).sum()), axis=1)
supply = supply.groupby(rename_techs_tyndp, axis=1).sum()
both = supply.columns[(supply < 0.).any() & (supply > 0.).any()]
positive_supply = supply[both]
negative_supply = supply[both]
positive_supply[positive_supply < 0.] = 0.
negative_supply[negative_supply > 0.] = 0.
supply[both] = positive_supply
suffix = " charging"
negative_supply.columns = negative_supply.columns + suffix
supply = pd.concat((supply, negative_supply), axis=1)
# 14-21.2 for flaute
# 19-26.1 for flaute
start = "2013-02-19"
stop = "2013-02-26"
threshold = 10e3
to_drop = supply.columns[(abs(supply) < threshold).all()]
if len(to_drop) != 0:
print("dropping", to_drop)
supply.drop(columns=to_drop, inplace=True)
supply.index.name = None
supply = supply / 1e3
supply.rename(columns={"electricity": "electric demand",
"heat": "heat demand"},
inplace=True)
supply.columns = supply.columns.str.replace("residential ", "")
supply.columns = supply.columns.str.replace("services ", "")
supply.columns = supply.columns.str.replace("urban decentral ", "decentral ")
preferred_order = pd.Index(["electric demand",
"transmission lines",
"hydroelectricity",
"hydro reservoir",
"run of river",
"pumped hydro storage",
"CHP",
"onshore wind",
"offshore wind",
"solar PV",
"solar thermal",
"building retrofitting",
"ground heat pump",
"air heat pump",
"resistive heater",
"OCGT",
"gas boiler",
"gas",
"natural gas",
"methanation",
"hydrogen storage",
"battery storage",
"hot water storage"])
new_columns = ((preferred_order & supply.columns)
.append(supply.columns.difference(preferred_order)))
supply = supply.groupby(supply.columns, axis=1).sum()
fig, ax = plt.subplots()
fig.set_size_inches((8, 5))
(supply.loc[start:stop, new_columns]
.plot(ax=ax, kind="area", stacked=True, linewidth=0.,
color=[snakemake.config['plotting']['tech_colors'][i.replace(suffix, "")]
for i in new_columns]))
handles, labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
new_handles = []
new_labels = []
for i, item in enumerate(labels):
if "charging" not in item:
new_handles.append(handles[i])
new_labels.append(labels[i])
ax.legend(new_handles, new_labels, ncol=3, loc="upper left")
ax.set_xlim([start, stop])
ax.set_ylim([-1300, 1900])
ax.grid(True)
ax.set_ylabel("Power [GW]")
fig.tight_layout()
fig.savefig("{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format(
snakemake.config['results_dir'], snakemake.config['run'],
snakemake.wildcards["lv"],
carrier, start, stop, name),
transparent=True)
# %%
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.config['run'] = "retro_vs_noretro"
snakemake.wildcards = {"lv": "1.0"} # lv1.0, lv1.25, lvopt
name = "elec_s_48_lv{}__Co2L0-3H-T-H-B".format(snakemake.wildcards["lv"])
suffix = "_retro_tes"
name = name + suffix
snakemake.input = Dict()
snakemake.output = Dict(
map=(snakemake.config['results_dir'] + snakemake.config['run']
+ "/maps/{}".format(name)),
today=(snakemake.config['results_dir'] + snakemake.config['run']
+ "/maps/{}.pdf".format(name)))
snakemake.input.scenario = "lv" + snakemake.wildcards["lv"]
# snakemake.config["run"] = "bio_costs"
path = snakemake.config['results_dir'] + snakemake.config['run']
snakemake.input.network = (path +
"/postnetworks/{}.nc"
.format(name))
snakemake.output.network = (path +
"/maps/{}"
.format(name))
n = pypsa.Network(snakemake.input.network,
override_component_attrs=override_component_attrs)
plot_map(n, components=["generators", "links", "stores", "storage_units"],
bus_size_factor=1.5e10, transmission=False)
plot_h2_map(n)
plot_map_without(n)
#plot_series(n, carrier="AC", name=suffix)
#plot_series(n, carrier="heat", name=suffix)