127 lines
4.3 KiB
Python
127 lines
4.3 KiB
Python
"""Solve operations network."""
|
|
|
|
|
|
import pypsa
|
|
import numpy as np
|
|
|
|
from solve_network import solve_network, prepare_network
|
|
from helper import override_component_attrs
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
pypsa.pf.logger.setLevel(logging.WARNING)
|
|
|
|
|
|
def set_parameters_from_optimized(n, n_optim):
|
|
lines_typed_i = n.lines.index[n.lines.type != '']
|
|
n.lines.loc[lines_typed_i, 'num_parallel'] = \
|
|
n_optim.lines['num_parallel'].reindex(lines_typed_i, fill_value=0.)
|
|
n.lines.loc[lines_typed_i, 's_nom'] = (
|
|
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
|
|
n.lines.bus0.map(n.buses.v_nom) * n.lines.num_parallel)
|
|
|
|
lines_untyped_i = n.lines.index[n.lines.type == '']
|
|
for attr in ('s_nom', 'r', 'x'):
|
|
n.lines.loc[lines_untyped_i, attr] = \
|
|
n_optim.lines[attr].reindex(lines_untyped_i, fill_value=0.)
|
|
n.lines['s_nom_extendable'] = False
|
|
|
|
links_dc_i = n.links.index[n.links.p_nom_extendable]
|
|
n.links.loc[links_dc_i, 'p_nom'] = \
|
|
n_optim.links['p_nom_opt'].reindex(links_dc_i, fill_value=0.)
|
|
n.links.loc[links_dc_i, 'p_nom_extendable'] = False
|
|
|
|
gen_extend_i = n.generators.index[n.generators.p_nom_extendable]
|
|
n.generators.loc[gen_extend_i, 'p_nom'] = \
|
|
n_optim.generators['p_nom_opt'].reindex(gen_extend_i, fill_value=0.)
|
|
n.generators.loc[gen_extend_i, 'p_nom_extendable'] = False
|
|
|
|
stor_units_extend_i = n.storage_units.index[n.storage_units.p_nom_extendable]
|
|
n.storage_units.loc[stor_units_extend_i, 'p_nom'] = \
|
|
n_optim.storage_units['p_nom_opt'].reindex(stor_units_extend_i, fill_value=0.)
|
|
n.storage_units.loc[stor_units_extend_i, 'p_nom_extendable'] = False
|
|
|
|
stor_extend_i = n.stores.index[n.stores.e_nom_extendable]
|
|
n.stores.loc[stor_extend_i, 'e_nom'] = \
|
|
n_optim.stores['e_nom_opt'].reindex(stor_extend_i, fill_value=0.)
|
|
n.stores.loc[stor_extend_i, 'e_nom_extendable'] = False
|
|
|
|
return n
|
|
|
|
|
|
def remove_unused_components(n, threshold=50):
|
|
logger.info("Remove assets that are barely used to speed things up.")
|
|
|
|
for c in n.iterate_components({"Store", "Link", "Generator"}):
|
|
attr = "e_nom" if c.name == "Store" else "p_nom"
|
|
to_remove = c.df.loc[c.df[attr] < threshold].index
|
|
logger.info(f"Removing barely used {c.name}s:\n{to_remove}")
|
|
n.mremove(c.name, to_remove)
|
|
|
|
return n
|
|
|
|
|
|
def add_load_shedding(n, voll=1e4):
|
|
logger.info("Add load shedding to all buses.")
|
|
|
|
if "load" in n.generators.carrier.unique():
|
|
to_remove = n.generators.query("carrier == 'load'").index
|
|
logger.info(f"Removing pre-existing load shedding:\n{to_remove}")
|
|
n.mremove("Generator", to_remove)
|
|
|
|
n.madd("Generator", n.buses.index,
|
|
suffix=" load",
|
|
bus=n.buses.index,
|
|
carrier='load',
|
|
marginal_cost=voll,
|
|
p_nom=1e6
|
|
)
|
|
|
|
return n
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from helper import mock_snakemake
|
|
snakemake = mock_snakemake(
|
|
'solve_operations_network',
|
|
capacity_year=1952,
|
|
simpl='',
|
|
opts='',
|
|
clusters=37,
|
|
lv=2.0,
|
|
sector_opts='Co2L0-25H-T-H-B-I-A',
|
|
planning_horizons=2030,
|
|
weather_year=2013
|
|
)
|
|
|
|
logging.basicConfig(filename=snakemake.log.python,
|
|
level=snakemake.config['logging_level'])
|
|
|
|
tmpdir = snakemake.config['solving'].get('tmpdir')
|
|
if tmpdir is not None:
|
|
from pathlib import Path
|
|
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
|
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
|
|
n = pypsa.Network(snakemake.input.pre, override_component_attrs=overrides)
|
|
n_post = pypsa.Network(snakemake.input.post, override_component_attrs=overrides)
|
|
n = set_parameters_from_optimized(n, n_post)
|
|
del n_post
|
|
|
|
n = remove_unused_components(n)
|
|
n = add_load_shedding(n)
|
|
|
|
opts = snakemake.wildcards.sector_opts.split('-')
|
|
solve_opts = snakemake.config['solving']['options']
|
|
solve_opts['skip_iterations'] = True
|
|
|
|
n = prepare_network(n, solve_opts)
|
|
|
|
n = solve_network(n, config=snakemake.config, opts=opts,
|
|
solver_dir=tmpdir,
|
|
solver_logfile=snakemake.log.solver)
|
|
|
|
n.export_to_netcdf(snakemake.output[0])
|