919 lines
32 KiB
Python
Executable File
919 lines
32 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Adds electrical generators and existing hydro storage units to a base network.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
costs:
|
|
year:
|
|
version:
|
|
dicountrate:
|
|
emission_prices:
|
|
|
|
electricity:
|
|
max_hours:
|
|
marginal_cost:
|
|
capital_cost:
|
|
conventional_carriers:
|
|
co2limit:
|
|
extendable_carriers:
|
|
estimate_renewable_capacities:
|
|
|
|
|
|
load:
|
|
scaling_factor:
|
|
|
|
renewable:
|
|
hydro:
|
|
carriers:
|
|
hydro_max_hours:
|
|
hydro_capital_cost:
|
|
|
|
lines:
|
|
length_factor:
|
|
|
|
.. seealso::
|
|
Documentation of the configuration file ``config/config.yaml`` at :ref:`costs_cf`,
|
|
:ref:`electricity_cf`, :ref:`load_cf`, :ref:`renewable_cf`, :ref:`lines_cf`
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
|
|
- ``data/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
|
|
|
|
.. image:: img/hydrocapacities.png
|
|
:scale: 34 %
|
|
|
|
- ``data/geth2015_hydro_capacities.csv``: alternative to capacities above; not currently used!
|
|
- ``resources/electricity_demand.csv`` Hourly per-country electricity demand profiles.
|
|
- ``resources/regions_onshore.geojson``: confer :ref:`busregions`
|
|
- ``resources/nuts3_shapes.geojson``: confer :ref:`shapes`
|
|
- ``resources/powerplants.csv``: confer :ref:`powerplants`
|
|
- ``resources/profile_{}.nc``: all technologies in ``config["renewables"].keys()``, confer :ref:`renewableprofiles`.
|
|
- ``networks/base.nc``: confer :ref:`base`
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``networks/elec.nc``:
|
|
|
|
.. image:: img/elec.png
|
|
:scale: 33 %
|
|
|
|
Description
|
|
-----------
|
|
|
|
The rule :mod:`add_electricity` ties all the different data inputs from the preceding rules together into a detailed PyPSA network that is stored in ``networks/elec.nc``. It includes:
|
|
|
|
- today's transmission topology and transfer capacities (optionally including lines which are under construction according to the config settings ``lines: under_construction`` and ``links: under_construction``),
|
|
- today's thermal and hydro power generation capacities (for the technologies listed in the config setting ``electricity: conventional_carriers``), and
|
|
- today's load time-series (upsampled in a top-down approach according to population and gross domestic product)
|
|
|
|
It further adds extendable ``generators`` with **zero** capacity for
|
|
|
|
- photovoltaic, onshore and AC- as well as DC-connected offshore wind installations with today's locational, hourly wind and solar capacity factors (but **no** current capacities),
|
|
- additional open- and combined-cycle gas turbines (if ``OCGT`` and/or ``CCGT`` is listed in the config setting ``electricity: extendable_carriers``)
|
|
"""
|
|
|
|
import logging
|
|
from itertools import product
|
|
from typing import Dict, List
|
|
|
|
import geopandas as gpd
|
|
import numpy as np
|
|
import pandas as pd
|
|
import powerplantmatching as pm
|
|
import pypsa
|
|
import scipy.sparse as sparse
|
|
import xarray as xr
|
|
from _helpers import (
|
|
configure_logging,
|
|
get_snapshots,
|
|
set_scenario_config,
|
|
update_p_nom_max,
|
|
)
|
|
from powerplantmatching.export import map_country_bus
|
|
from shapely.prepared import prep
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def normed(s):
|
|
return s / s.sum()
|
|
|
|
|
|
def calculate_annuity(n, r):
|
|
"""
|
|
Calculate the annuity factor for an asset with lifetime n years and.
|
|
|
|
discount rate of r, e.g. annuity(20, 0.05) * 20 = 1.6
|
|
"""
|
|
if isinstance(r, pd.Series):
|
|
return pd.Series(1 / n, index=r.index).where(
|
|
r == 0, r / (1.0 - 1.0 / (1.0 + r) ** n)
|
|
)
|
|
elif r > 0:
|
|
return r / (1.0 - 1.0 / (1.0 + r) ** n)
|
|
else:
|
|
return 1 / n
|
|
|
|
|
|
def add_missing_carriers(n, carriers):
|
|
"""
|
|
Function to add missing carriers to the network without raising errors.
|
|
"""
|
|
missing_carriers = set(carriers) - set(n.carriers.index)
|
|
if len(missing_carriers) > 0:
|
|
n.madd("Carrier", missing_carriers)
|
|
|
|
|
|
def sanitize_carriers(n, config):
|
|
"""
|
|
Sanitize the carrier information in a PyPSA Network object.
|
|
|
|
The function ensures that all unique carrier names are present in the network's
|
|
carriers attribute, and adds nice names and colors for each carrier according
|
|
to the provided configuration dictionary.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
A PyPSA Network object that represents an electrical power system.
|
|
config : dict
|
|
A dictionary containing configuration information, specifically the
|
|
"plotting" key with "nice_names" and "tech_colors" keys for carriers.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
The function modifies the 'n' PyPSA Network object in-place, updating the
|
|
carriers attribute with nice names and colors.
|
|
|
|
Warnings
|
|
--------
|
|
Raises a warning if any carrier's "tech_colors" are not defined in the config dictionary.
|
|
"""
|
|
|
|
for c in n.iterate_components():
|
|
if "carrier" in c.df:
|
|
add_missing_carriers(n, c.df.carrier)
|
|
|
|
carrier_i = n.carriers.index
|
|
nice_names = (
|
|
pd.Series(config["plotting"]["nice_names"])
|
|
.reindex(carrier_i)
|
|
.fillna(carrier_i.to_series())
|
|
)
|
|
n.carriers["nice_name"] = n.carriers.nice_name.where(
|
|
n.carriers.nice_name != "", nice_names
|
|
)
|
|
colors = pd.Series(config["plotting"]["tech_colors"]).reindex(carrier_i)
|
|
if colors.isna().any():
|
|
missing_i = list(colors.index[colors.isna()])
|
|
logger.warning(f"tech_colors for carriers {missing_i} not defined in config.")
|
|
n.carriers["color"] = n.carriers.color.where(n.carriers.color != "", colors)
|
|
|
|
|
|
def sanitize_locations(n):
|
|
if "location" in n.buses.columns:
|
|
n.buses["x"] = n.buses.x.where(n.buses.x != 0, n.buses.location.map(n.buses.x))
|
|
n.buses["y"] = n.buses.y.where(n.buses.y != 0, n.buses.location.map(n.buses.y))
|
|
n.buses["country"] = n.buses.country.where(
|
|
n.buses.country.ne("") & n.buses.country.notnull(),
|
|
n.buses.location.map(n.buses.country),
|
|
)
|
|
|
|
|
|
def add_co2_emissions(n, costs, carriers):
|
|
"""
|
|
Add CO2 emissions to the network's carriers attribute.
|
|
"""
|
|
suptechs = n.carriers.loc[carriers].index.str.split("-").str[0]
|
|
n.carriers.loc[carriers, "co2_emissions"] = costs.co2_emissions[suptechs].values
|
|
|
|
|
|
def load_costs(tech_costs, config, max_hours, Nyears=1.0):
|
|
# set all asset costs and other parameters
|
|
costs = pd.read_csv(tech_costs, index_col=[0, 1]).sort_index()
|
|
|
|
# correct units to MW
|
|
costs.loc[costs.unit.str.contains("/kW"), "value"] *= 1e3
|
|
costs.unit = costs.unit.str.replace("/kW", "/MW")
|
|
|
|
fill_values = config["fill_values"]
|
|
costs = costs.value.unstack().fillna(fill_values)
|
|
|
|
costs["capital_cost"] = (
|
|
(
|
|
calculate_annuity(costs["lifetime"], costs["discount rate"])
|
|
+ costs["FOM"] / 100.0
|
|
)
|
|
* costs["investment"]
|
|
* Nyears
|
|
)
|
|
costs.at["OCGT", "fuel"] = costs.at["gas", "fuel"]
|
|
costs.at["CCGT", "fuel"] = costs.at["gas", "fuel"]
|
|
|
|
costs["marginal_cost"] = costs["VOM"] + costs["fuel"] / costs["efficiency"]
|
|
|
|
costs = costs.rename(columns={"CO2 intensity": "co2_emissions"})
|
|
|
|
costs.at["OCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
|
|
costs.at["CCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
|
|
|
|
costs.at["solar", "capital_cost"] = (
|
|
config["rooftop_share"] * costs.at["solar-rooftop", "capital_cost"]
|
|
+ (1 - config["rooftop_share"]) * costs.at["solar-utility", "capital_cost"]
|
|
)
|
|
|
|
def costs_for_storage(store, link1, link2=None, max_hours=1.0):
|
|
capital_cost = link1["capital_cost"] + max_hours * store["capital_cost"]
|
|
if link2 is not None:
|
|
capital_cost += link2["capital_cost"]
|
|
return pd.Series(
|
|
dict(capital_cost=capital_cost, marginal_cost=0.0, co2_emissions=0.0)
|
|
)
|
|
|
|
costs.loc["battery"] = costs_for_storage(
|
|
costs.loc["battery storage"],
|
|
costs.loc["battery inverter"],
|
|
max_hours=max_hours["battery"],
|
|
)
|
|
costs.loc["H2"] = costs_for_storage(
|
|
costs.loc["hydrogen storage underground"],
|
|
costs.loc["fuel cell"],
|
|
costs.loc["electrolysis"],
|
|
max_hours=max_hours["H2"],
|
|
)
|
|
|
|
for attr in ("marginal_cost", "capital_cost"):
|
|
overwrites = config.get(attr)
|
|
if overwrites is not None:
|
|
overwrites = pd.Series(overwrites)
|
|
costs.loc[overwrites.index, attr] = overwrites
|
|
|
|
return costs
|
|
|
|
|
|
def load_powerplants(ppl_fn):
|
|
carrier_dict = {
|
|
"ocgt": "OCGT",
|
|
"ccgt": "CCGT",
|
|
"bioenergy": "biomass",
|
|
"ccgt, thermal": "CCGT",
|
|
"hard coal": "coal",
|
|
"natural gas": "OCGT",
|
|
}
|
|
return (
|
|
pd.read_csv(ppl_fn, index_col=0, dtype={"bus": "str"})
|
|
.powerplant.to_pypsa_names()
|
|
.rename(columns=str.lower)
|
|
.replace({"carrier": carrier_dict})
|
|
)
|
|
|
|
|
|
def shapes_to_shapes(orig, dest):
|
|
"""
|
|
Adopted from vresutils.transfer.Shapes2Shapes()
|
|
"""
|
|
orig_prepped = list(map(prep, orig))
|
|
transfer = sparse.lil_matrix((len(dest), len(orig)), dtype=float)
|
|
|
|
for i, j in product(range(len(dest)), range(len(orig))):
|
|
if orig_prepped[j].intersects(dest[i]):
|
|
area = orig[j].intersection(dest[i]).area
|
|
transfer[i, j] = area / dest[i].area
|
|
|
|
return transfer
|
|
|
|
|
|
def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1.0):
|
|
substation_lv_i = n.buses.index[n.buses["substation_lv"]]
|
|
regions = gpd.read_file(regions).set_index("name").reindex(substation_lv_i)
|
|
opsd_load = pd.read_csv(load, index_col=0, parse_dates=True).filter(items=countries)
|
|
|
|
ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={"name": "str"}).set_index("name")
|
|
|
|
logger.info(f"Load data scaled by factor {scaling}.")
|
|
opsd_load *= scaling
|
|
|
|
nuts3 = gpd.read_file(nuts3_shapes).set_index("index")
|
|
|
|
def upsample(cntry, group):
|
|
load = opsd_load[cntry]
|
|
|
|
if len(group) == 1:
|
|
return pd.DataFrame({group.index[0]: load})
|
|
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
|
|
transfer = shapes_to_shapes(group, nuts3_cntry.geometry).T.tocsr()
|
|
gdp_n = pd.Series(
|
|
transfer.dot(nuts3_cntry["gdp"].fillna(1.0).values), index=group.index
|
|
)
|
|
pop_n = pd.Series(
|
|
transfer.dot(nuts3_cntry["pop"].fillna(1.0).values), index=group.index
|
|
)
|
|
|
|
# relative factors 0.6 and 0.4 have been determined from a linear
|
|
# regression on the country to continent load data
|
|
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
|
|
if cntry in ["UA", "MD"]:
|
|
# overwrite factor because nuts3 provides no data for UA+MD
|
|
factors = normed(ua_md_gdp.loc[group.index, "GDP_PPP"].squeeze())
|
|
return pd.DataFrame(
|
|
factors.values * load.values[:, np.newaxis],
|
|
index=load.index,
|
|
columns=factors.index,
|
|
)
|
|
|
|
load = pd.concat(
|
|
[
|
|
upsample(cntry, group)
|
|
for cntry, group in regions.geometry.groupby(regions.country)
|
|
],
|
|
axis=1,
|
|
)
|
|
|
|
n.madd(
|
|
"Load", substation_lv_i, bus=substation_lv_i, p_set=load
|
|
) # carrier="electricity"
|
|
|
|
|
|
def update_transmission_costs(n, costs, length_factor=1.0):
|
|
# TODO: line length factor of lines is applied to lines and links.
|
|
# Separate the function to distinguish.
|
|
|
|
n.lines["capital_cost"] = (
|
|
n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"]
|
|
)
|
|
|
|
if n.links.empty:
|
|
return
|
|
|
|
dc_b = n.links.carrier == "DC"
|
|
|
|
# If there are no dc links, then the 'underwater_fraction' column
|
|
# may be missing. Therefore we have to return here.
|
|
if n.links.loc[dc_b].empty:
|
|
return
|
|
|
|
costs = (
|
|
n.links.loc[dc_b, "length"]
|
|
* length_factor
|
|
* (
|
|
(1.0 - n.links.loc[dc_b, "underwater_fraction"])
|
|
* costs.at["HVDC overhead", "capital_cost"]
|
|
+ n.links.loc[dc_b, "underwater_fraction"]
|
|
* costs.at["HVDC submarine", "capital_cost"]
|
|
)
|
|
+ costs.at["HVDC inverter pair", "capital_cost"]
|
|
)
|
|
n.links.loc[dc_b, "capital_cost"] = costs
|
|
|
|
|
|
def attach_wind_and_solar(
|
|
n, costs, input_profiles, carriers, extendable_carriers, line_length_factor=1
|
|
):
|
|
add_missing_carriers(n, carriers)
|
|
for car in carriers:
|
|
if car == "hydro":
|
|
continue
|
|
|
|
with xr.open_dataset(getattr(input_profiles, "profile_" + car)) as ds:
|
|
if ds.indexes["bus"].empty:
|
|
continue
|
|
|
|
# if-statement for compatibility with old profiles
|
|
if "year" in ds.indexes:
|
|
ds = ds.sel(year=ds.year.min(), drop=True)
|
|
|
|
supcar = car.split("-", 2)[0]
|
|
if supcar == "offwind":
|
|
underwater_fraction = ds["underwater_fraction"].to_pandas()
|
|
connection_cost = (
|
|
line_length_factor
|
|
* ds["average_distance"].to_pandas()
|
|
* (
|
|
underwater_fraction
|
|
* costs.at[car + "-connection-submarine", "capital_cost"]
|
|
+ (1.0 - underwater_fraction)
|
|
* costs.at[car + "-connection-underground", "capital_cost"]
|
|
)
|
|
)
|
|
capital_cost = (
|
|
costs.at["offwind", "capital_cost"]
|
|
+ costs.at[car + "-station", "capital_cost"]
|
|
+ connection_cost
|
|
)
|
|
logger.info(
|
|
"Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}".format(
|
|
connection_cost.min(), connection_cost.max(), car
|
|
)
|
|
)
|
|
else:
|
|
capital_cost = costs.at[car, "capital_cost"]
|
|
|
|
n.madd(
|
|
"Generator",
|
|
ds.indexes["bus"],
|
|
" " + car,
|
|
bus=ds.indexes["bus"],
|
|
carrier=car,
|
|
p_nom_extendable=car in extendable_carriers["Generator"],
|
|
p_nom_max=ds["p_nom_max"].to_pandas(),
|
|
weight=ds["weight"].to_pandas(),
|
|
marginal_cost=costs.at[supcar, "marginal_cost"],
|
|
capital_cost=capital_cost,
|
|
efficiency=costs.at[supcar, "efficiency"],
|
|
p_max_pu=ds["profile"].transpose("time", "bus").to_pandas(),
|
|
lifetime=costs.at[supcar, "lifetime"],
|
|
)
|
|
|
|
|
|
def attach_conventional_generators(
|
|
n,
|
|
costs,
|
|
ppl,
|
|
conventional_carriers,
|
|
extendable_carriers,
|
|
conventional_params,
|
|
conventional_inputs,
|
|
unit_commitment=None,
|
|
fuel_price=None,
|
|
):
|
|
carriers = list(set(conventional_carriers) | set(extendable_carriers["Generator"]))
|
|
add_missing_carriers(n, carriers)
|
|
add_co2_emissions(n, costs, carriers)
|
|
|
|
# Replace carrier "natural gas" with the respective technology (OCGT or
|
|
# CCGT) to align with PyPSA names of "carriers" and avoid filtering "natural
|
|
# gas" powerplants in ppl.query("carrier in @carriers")
|
|
ppl.loc[ppl["carrier"] == "natural gas", "carrier"] = ppl.loc[
|
|
ppl["carrier"] == "natural gas", "technology"
|
|
]
|
|
|
|
ppl = (
|
|
ppl.query("carrier in @carriers")
|
|
.join(costs, on="carrier", rsuffix="_r")
|
|
.rename(index=lambda s: f"C{str(s)}")
|
|
)
|
|
ppl["efficiency"] = ppl.efficiency.fillna(ppl.efficiency_r)
|
|
|
|
if unit_commitment is not None:
|
|
committable_attrs = ppl.carrier.isin(unit_commitment).to_frame("committable")
|
|
for attr in unit_commitment.index:
|
|
default = pypsa.components.component_attrs["Generator"].default[attr]
|
|
committable_attrs[attr] = ppl.carrier.map(unit_commitment.loc[attr]).fillna(
|
|
default
|
|
)
|
|
else:
|
|
committable_attrs = {}
|
|
|
|
if fuel_price is not None:
|
|
fuel_price = fuel_price.assign(
|
|
OCGT=fuel_price["gas"], CCGT=fuel_price["gas"]
|
|
).drop("gas", axis=1)
|
|
missing_carriers = list(set(carriers) - set(fuel_price))
|
|
fuel_price = fuel_price.assign(**costs.fuel[missing_carriers])
|
|
fuel_price = fuel_price.reindex(ppl.carrier, axis=1)
|
|
fuel_price.columns = ppl.index
|
|
marginal_cost = fuel_price.div(ppl.efficiency).add(ppl.carrier.map(costs.VOM))
|
|
else:
|
|
marginal_cost = (
|
|
ppl.carrier.map(costs.VOM) + ppl.carrier.map(costs.fuel) / ppl.efficiency
|
|
)
|
|
|
|
# Define generators using modified ppl DataFrame
|
|
caps = ppl.groupby("carrier").p_nom.sum().div(1e3).round(2)
|
|
logger.info(f"Adding {len(ppl)} generators with capacities [GW] \n{caps}")
|
|
|
|
n.madd(
|
|
"Generator",
|
|
ppl.index,
|
|
carrier=ppl.carrier,
|
|
bus=ppl.bus,
|
|
p_nom_min=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0),
|
|
p_nom=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0),
|
|
p_nom_extendable=ppl.carrier.isin(extendable_carriers["Generator"]),
|
|
efficiency=ppl.efficiency,
|
|
marginal_cost=marginal_cost,
|
|
capital_cost=ppl.capital_cost,
|
|
build_year=ppl.datein.fillna(0).astype(int),
|
|
lifetime=(ppl.dateout - ppl.datein).fillna(np.inf),
|
|
**committable_attrs,
|
|
)
|
|
|
|
for carrier in set(conventional_params) & set(carriers):
|
|
# Generators with technology affected
|
|
idx = n.generators.query("carrier == @carrier").index
|
|
|
|
for attr in list(set(conventional_params[carrier]) & set(n.generators)):
|
|
values = conventional_params[carrier][attr]
|
|
|
|
if f"conventional_{carrier}_{attr}" in conventional_inputs:
|
|
# Values affecting generators of technology k country-specific
|
|
# First map generator buses to countries; then map countries to p_max_pu
|
|
values = pd.read_csv(
|
|
snakemake.input[f"conventional_{carrier}_{attr}"], index_col=0
|
|
).iloc[:, 0]
|
|
bus_values = n.buses.country.map(values)
|
|
n.generators.update(
|
|
{attr: n.generators.loc[idx].bus.map(bus_values).dropna()}
|
|
)
|
|
else:
|
|
# Single value affecting all generators of technology k indiscriminantely of country
|
|
n.generators.loc[idx, attr] = values
|
|
|
|
|
|
def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **params):
|
|
add_missing_carriers(n, carriers)
|
|
add_co2_emissions(n, costs, carriers)
|
|
|
|
ppl = (
|
|
ppl.query('carrier == "hydro"')
|
|
.reset_index(drop=True)
|
|
.rename(index=lambda s: f"{str(s)} hydro")
|
|
)
|
|
ror = ppl.query('technology == "Run-Of-River"')
|
|
phs = ppl.query('technology == "Pumped Storage"')
|
|
hydro = ppl.query('technology == "Reservoir"')
|
|
|
|
country = ppl["bus"].map(n.buses.country).rename("country")
|
|
|
|
inflow_idx = ror.index.union(hydro.index)
|
|
if not inflow_idx.empty:
|
|
dist_key = ppl.loc[inflow_idx, "p_nom"].groupby(country).transform(normed)
|
|
|
|
with xr.open_dataarray(profile_hydro) as inflow:
|
|
inflow_countries = pd.Index(country[inflow_idx])
|
|
missing_c = inflow_countries.unique().difference(
|
|
inflow.indexes["countries"]
|
|
)
|
|
assert missing_c.empty, (
|
|
f"'{profile_hydro}' is missing "
|
|
f"inflow time-series for at least one country: {', '.join(missing_c)}"
|
|
)
|
|
|
|
inflow_t = (
|
|
inflow.sel(countries=inflow_countries)
|
|
.rename({"countries": "name"})
|
|
.assign_coords(name=inflow_idx)
|
|
.transpose("time", "name")
|
|
.to_pandas()
|
|
.multiply(dist_key, axis=1)
|
|
)
|
|
|
|
if "ror" in carriers and not ror.empty:
|
|
n.madd(
|
|
"Generator",
|
|
ror.index,
|
|
carrier="ror",
|
|
bus=ror["bus"],
|
|
p_nom=ror["p_nom"],
|
|
efficiency=costs.at["ror", "efficiency"],
|
|
capital_cost=costs.at["ror", "capital_cost"],
|
|
weight=ror["p_nom"],
|
|
p_max_pu=(
|
|
inflow_t[ror.index]
|
|
.divide(ror["p_nom"], axis=1)
|
|
.where(lambda df: df <= 1.0, other=1.0)
|
|
),
|
|
)
|
|
|
|
if "PHS" in carriers and not phs.empty:
|
|
# fill missing max hours to params value and
|
|
# assume no natural inflow due to lack of data
|
|
max_hours = params.get("PHS_max_hours", 6)
|
|
phs = phs.replace({"max_hours": {0: max_hours, np.nan: max_hours}})
|
|
n.madd(
|
|
"StorageUnit",
|
|
phs.index,
|
|
carrier="PHS",
|
|
bus=phs["bus"],
|
|
p_nom=phs["p_nom"],
|
|
capital_cost=costs.at["PHS", "capital_cost"],
|
|
max_hours=phs["max_hours"],
|
|
efficiency_store=np.sqrt(costs.at["PHS", "efficiency"]),
|
|
efficiency_dispatch=np.sqrt(costs.at["PHS", "efficiency"]),
|
|
cyclic_state_of_charge=True,
|
|
)
|
|
|
|
if "hydro" in carriers and not hydro.empty:
|
|
hydro_max_hours = params.get("hydro_max_hours")
|
|
|
|
assert hydro_max_hours is not None, "No path for hydro capacities given."
|
|
|
|
hydro_stats = pd.read_csv(
|
|
hydro_capacities, comment="#", na_values="-", index_col=0
|
|
)
|
|
e_target = hydro_stats["E_store[TWh]"].clip(lower=0.2) * 1e6
|
|
e_installed = hydro.eval("p_nom * max_hours").groupby(hydro.country).sum()
|
|
e_missing = e_target - e_installed
|
|
missing_mh_i = hydro.query("max_hours.isnull()").index
|
|
|
|
if hydro_max_hours == "energy_capacity_totals_by_country":
|
|
# watch out some p_nom values like IE's are totally underrepresented
|
|
max_hours_country = (
|
|
e_missing / hydro.loc[missing_mh_i].groupby("country").p_nom.sum()
|
|
)
|
|
|
|
elif hydro_max_hours == "estimate_by_large_installations":
|
|
max_hours_country = (
|
|
hydro_stats["E_store[TWh]"] * 1e3 / hydro_stats["p_nom_discharge[GW]"]
|
|
)
|
|
|
|
max_hours_country.clip(0, inplace=True)
|
|
|
|
missing_countries = pd.Index(hydro["country"].unique()).difference(
|
|
max_hours_country.dropna().index
|
|
)
|
|
if not missing_countries.empty:
|
|
logger.warning(
|
|
f'Assuming max_hours=6 for hydro reservoirs in the countries: {", ".join(missing_countries)}'
|
|
)
|
|
hydro_max_hours = hydro.max_hours.where(
|
|
hydro.max_hours > 0, hydro.country.map(max_hours_country)
|
|
).fillna(6)
|
|
|
|
if params.get("flatten_dispatch", False):
|
|
buffer = params.get("flatten_dispatch_buffer", 0.2)
|
|
average_capacity_factor = inflow_t[hydro.index].mean() / hydro["p_nom"]
|
|
p_max_pu = (average_capacity_factor + buffer).clip(upper=1)
|
|
else:
|
|
p_max_pu = 1
|
|
|
|
n.madd(
|
|
"StorageUnit",
|
|
hydro.index,
|
|
carrier="hydro",
|
|
bus=hydro["bus"],
|
|
p_nom=hydro["p_nom"],
|
|
max_hours=hydro_max_hours,
|
|
capital_cost=costs.at["hydro", "capital_cost"],
|
|
marginal_cost=costs.at["hydro", "marginal_cost"],
|
|
p_max_pu=p_max_pu, # dispatch
|
|
p_min_pu=0.0, # store
|
|
efficiency_dispatch=costs.at["hydro", "efficiency"],
|
|
efficiency_store=0.0,
|
|
cyclic_state_of_charge=True,
|
|
inflow=inflow_t.loc[:, hydro.index],
|
|
)
|
|
|
|
|
|
def attach_OPSD_renewables(n: pypsa.Network, tech_map: Dict[str, List[str]]) -> None:
|
|
"""
|
|
Attach renewable capacities from the OPSD dataset to the network.
|
|
|
|
Args:
|
|
- n: The PyPSA network to attach the capacities to.
|
|
- tech_map: A dictionary mapping fuel types to carrier names.
|
|
|
|
Returns:
|
|
- None
|
|
"""
|
|
tech_string = ", ".join(sum(tech_map.values(), []))
|
|
logger.info(f"Using OPSD renewable capacities for carriers {tech_string}.")
|
|
|
|
df = pm.data.OPSD_VRE().powerplant.convert_country_to_alpha2()
|
|
technology_b = ~df.Technology.isin(["Onshore", "Offshore"])
|
|
df["Fueltype"] = df.Fueltype.where(technology_b, df.Technology).replace(
|
|
{"Solar": "PV"}
|
|
)
|
|
df = df.query("Fueltype in @tech_map").powerplant.convert_country_to_alpha2()
|
|
df = df.dropna(subset=["lat", "lon"])
|
|
|
|
for fueltype, carriers in tech_map.items():
|
|
gens = n.generators[lambda df: df.carrier.isin(carriers)]
|
|
buses = n.buses.loc[gens.bus.unique()]
|
|
gens_per_bus = gens.groupby("bus").p_nom.count()
|
|
|
|
caps = map_country_bus(df.query("Fueltype == @fueltype"), buses)
|
|
caps = caps.groupby(["bus"]).Capacity.sum()
|
|
caps = caps / gens_per_bus.reindex(caps.index, fill_value=1)
|
|
|
|
n.generators.update({"p_nom": gens.bus.map(caps).dropna()})
|
|
n.generators.update({"p_nom_min": gens.bus.map(caps).dropna()})
|
|
|
|
|
|
def estimate_renewable_capacities(
|
|
n: pypsa.Network, year: int, tech_map: dict, expansion_limit: bool, countries: list
|
|
) -> None:
|
|
"""
|
|
Estimate a different between renewable capacities in the network and
|
|
reported country totals from IRENASTAT dataset. Distribute the difference
|
|
with a heuristic.
|
|
|
|
Heuristic: n.generators_t.p_max_pu.mean() * n.generators.p_nom_max
|
|
|
|
Args:
|
|
- n: The PyPSA network.
|
|
- year: The year of optimisation.
|
|
- tech_map: A dictionary mapping fuel types to carrier names.
|
|
- expansion_limit: Boolean value from config file
|
|
- countries: A list of country codes to estimate capacities for.
|
|
|
|
Returns:
|
|
- None
|
|
"""
|
|
if not len(countries) or not len(tech_map):
|
|
return
|
|
|
|
capacities = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
|
|
capacities = capacities.query(
|
|
"Year == @year and Technology in @tech_map and Country in @countries"
|
|
)
|
|
capacities = capacities.groupby(["Technology", "Country"]).Capacity.sum()
|
|
|
|
logger.info(
|
|
f"Heuristics applied to distribute renewable capacities [GW]: "
|
|
f"\n{capacities.groupby('Technology').sum().div(1e3).round(2)}"
|
|
)
|
|
|
|
for ppm_technology, techs in tech_map.items():
|
|
tech_i = n.generators.query("carrier in @techs").index
|
|
if ppm_technology in capacities.index.get_level_values("Technology"):
|
|
stats = capacities.loc[ppm_technology].reindex(countries, fill_value=0.0)
|
|
else:
|
|
stats = pd.Series(0.0, index=countries)
|
|
country = n.generators.bus[tech_i].map(n.buses.country)
|
|
existent = n.generators.p_nom[tech_i].groupby(country).sum()
|
|
missing = stats - existent
|
|
dist = n.generators_t.p_max_pu.mean() * n.generators.p_nom_max
|
|
|
|
n.generators.loc[tech_i, "p_nom"] += (
|
|
dist[tech_i]
|
|
.groupby(country)
|
|
.transform(lambda s: normed(s) * missing[s.name])
|
|
.where(lambda s: s > 0.1, 0.0) # only capacities above 100kW
|
|
)
|
|
n.generators.loc[tech_i, "p_nom_min"] = n.generators.loc[tech_i, "p_nom"]
|
|
|
|
if expansion_limit:
|
|
assert np.isscalar(expansion_limit)
|
|
logger.info(
|
|
f"Reducing capacity expansion limit to {expansion_limit*100:.2f}% of installed capacity."
|
|
)
|
|
n.generators.loc[tech_i, "p_nom_max"] = (
|
|
expansion_limit * n.generators.loc[tech_i, "p_nom_min"]
|
|
)
|
|
|
|
|
|
def attach_line_rating(
|
|
n, rating, s_max_pu, correction_factor, max_voltage_difference, max_line_rating
|
|
):
|
|
# TODO: Only considers overhead lines
|
|
n.lines_t.s_max_pu = (rating / n.lines.s_nom[rating.columns]) * correction_factor
|
|
if max_voltage_difference:
|
|
x_pu = (
|
|
n.lines.type.map(n.line_types["x_per_length"])
|
|
* n.lines.length
|
|
/ (n.lines.v_nom**2)
|
|
)
|
|
# need to clip here as cap values might be below 1
|
|
# -> would mean the line cannot be operated at actual given pessimistic ampacity
|
|
s_max_pu_cap = (
|
|
np.deg2rad(max_voltage_difference) / (x_pu * n.lines.s_nom)
|
|
).clip(lower=1)
|
|
n.lines_t.s_max_pu = n.lines_t.s_max_pu.clip(
|
|
lower=1, upper=s_max_pu_cap, axis=1
|
|
)
|
|
if max_line_rating:
|
|
n.lines_t.s_max_pu = n.lines_t.s_max_pu.clip(upper=max_line_rating)
|
|
n.lines_t.s_max_pu *= s_max_pu
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake("add_electricity")
|
|
configure_logging(snakemake)
|
|
set_scenario_config(snakemake)
|
|
|
|
params = snakemake.params
|
|
|
|
n = pypsa.Network(snakemake.input.base_network)
|
|
|
|
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
|
|
n.set_snapshots(time)
|
|
|
|
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
|
|
|
|
costs = load_costs(
|
|
snakemake.input.tech_costs,
|
|
params.costs,
|
|
params.electricity["max_hours"],
|
|
Nyears,
|
|
)
|
|
ppl = load_powerplants(snakemake.input.powerplants)
|
|
|
|
attach_load(
|
|
n,
|
|
snakemake.input.regions,
|
|
snakemake.input.load,
|
|
snakemake.input.nuts3_shapes,
|
|
snakemake.input.ua_md_gdp,
|
|
params.countries,
|
|
params.scaling_factor,
|
|
)
|
|
|
|
update_transmission_costs(n, costs, params.length_factor)
|
|
|
|
renewable_carriers = set(params.electricity["renewable_carriers"])
|
|
extendable_carriers = params.electricity["extendable_carriers"]
|
|
conventional_carriers = params.electricity["conventional_carriers"]
|
|
conventional_inputs = {
|
|
k: v for k, v in snakemake.input.items() if k.startswith("conventional_")
|
|
}
|
|
|
|
if params.conventional["unit_commitment"]:
|
|
unit_commitment = pd.read_csv(snakemake.input.unit_commitment, index_col=0)
|
|
else:
|
|
unit_commitment = None
|
|
|
|
if params.conventional["dynamic_fuel_price"]:
|
|
fuel_price = pd.read_csv(
|
|
snakemake.input.fuel_price, index_col=0, header=0, parse_dates=True
|
|
)
|
|
fuel_price = fuel_price.reindex(n.snapshots).fillna(method="ffill")
|
|
else:
|
|
fuel_price = None
|
|
|
|
attach_conventional_generators(
|
|
n,
|
|
costs,
|
|
ppl,
|
|
conventional_carriers,
|
|
extendable_carriers,
|
|
params.conventional,
|
|
conventional_inputs,
|
|
unit_commitment=unit_commitment,
|
|
fuel_price=fuel_price,
|
|
)
|
|
|
|
attach_wind_and_solar(
|
|
n,
|
|
costs,
|
|
snakemake.input,
|
|
renewable_carriers,
|
|
extendable_carriers,
|
|
params.length_factor,
|
|
)
|
|
|
|
if "hydro" in renewable_carriers:
|
|
p = params.renewable["hydro"]
|
|
carriers = p.pop("carriers", [])
|
|
attach_hydro(
|
|
n,
|
|
costs,
|
|
ppl,
|
|
snakemake.input.profile_hydro,
|
|
snakemake.input.hydro_capacities,
|
|
carriers,
|
|
**p,
|
|
)
|
|
|
|
estimate_renewable_caps = params.electricity["estimate_renewable_capacities"]
|
|
if estimate_renewable_caps["enable"]:
|
|
tech_map = estimate_renewable_caps["technology_mapping"]
|
|
expansion_limit = estimate_renewable_caps["expansion_limit"]
|
|
year = estimate_renewable_caps["year"]
|
|
|
|
if estimate_renewable_caps["from_opsd"]:
|
|
attach_OPSD_renewables(n, tech_map)
|
|
estimate_renewable_capacities(
|
|
n, year, tech_map, expansion_limit, params.countries
|
|
)
|
|
|
|
update_p_nom_max(n)
|
|
|
|
line_rating_config = snakemake.config["lines"]["dynamic_line_rating"]
|
|
if line_rating_config["activate"]:
|
|
rating = xr.open_dataarray(snakemake.input.line_rating).to_pandas().transpose()
|
|
s_max_pu = snakemake.config["lines"]["s_max_pu"]
|
|
correction_factor = line_rating_config["correction_factor"]
|
|
max_voltage_difference = line_rating_config["max_voltage_difference"]
|
|
max_line_rating = line_rating_config["max_line_rating"]
|
|
|
|
attach_line_rating(
|
|
n,
|
|
rating,
|
|
s_max_pu,
|
|
correction_factor,
|
|
max_voltage_difference,
|
|
max_line_rating,
|
|
)
|
|
|
|
sanitize_carriers(n, snakemake.config)
|
|
|
|
n.meta = snakemake.config
|
|
n.export_to_netcdf(snakemake.output[0])
|