pypsa-eur/scripts/cluster_network.py
2019-02-20 21:10:45 +01:00

249 lines
10 KiB
Python

# coding: utf-8
import pandas as pd
idx = pd.IndexSlice
import logging
logger = logging.getLogger(__name__)
import os
import numpy as np
import scipy as sp
from scipy.sparse.csgraph import connected_components
import xarray as xr
import geopandas as gpd
import shapely
import networkx as nx
from shutil import copyfile
from six import iteritems
from six.moves import reduce
import pyomo.environ as po
import pypsa
from pypsa.io import import_components_from_dataframe, import_series_from_dataframe
from pypsa.networkclustering import (busmap_by_stubs, busmap_by_kmeans,
_make_consense, get_clustering_from_busmap,
aggregategenerators, aggregateoneport)
def normed(x):
return (x/x.sum()).fillna(0.)
def weighting_for_country(n, x):
conv_carriers = {'OCGT','CCGT','PHS', 'hydro'}
gen = (n
.generators.loc[n.generators.carrier.isin(conv_carriers)]
.groupby('bus').p_nom.sum()
.reindex(n.buses.index, fill_value=0.) +
n
.storage_units.loc[n.storage_units.carrier.isin(conv_carriers)]
.groupby('bus').p_nom.sum()
.reindex(n.buses.index, fill_value=0.))
load = n.loads_t.p_set.mean().groupby(n.loads.bus).sum()
b_i = x.index
g = normed(gen.reindex(b_i, fill_value=0))
l = normed(load.reindex(b_i, fill_value=0))
w= g + l
return (w * (100. / w.max())).clip(lower=1.).astype(int)
## Plot weighting for Germany
def plot_weighting(n, country, country_shape=None):
n.plot(bus_sizes=(2*weighting_for_country(n.buses.loc[n.buses.country == country])).reindex(n.buses.index, fill_value=1))
if country_shape is not None:
plt.xlim(country_shape.bounds[0], country_shape.bounds[2])
plt.ylim(country_shape.bounds[1], country_shape.bounds[3])
# # Determining the number of clusters per country
def distribute_clusters(n, n_clusters, solver_name=None):
if solver_name is None:
solver_name = snakemake.config['solver']['solver']['name']
L = (n.loads_t.p_set.mean()
.groupby(n.loads.bus).sum()
.groupby([n.buses.country, n.buses.sub_network]).sum()
.pipe(normed))
N = n.buses.groupby(['country', 'sub_network']).size()
assert n_clusters >= len(N) and n_clusters <= N.sum(), \
"Number of clusters must be {} <= n_clusters <= {} for this selection of countries.".format(len(N), N.sum())
m = po.ConcreteModel()
def n_bounds(model, *n_id):
return (1, N[n_id])
m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers)
m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters))
m.objective = po.Objective(expr=po.sum((m.n[i] - L.loc[i]*n_clusters)**2
for i in L.index),
sense=po.minimize)
opt = po.SolverFactory(solver_name)
if not opt.has_capability('quadratic_objective'):
logger.warn(f'The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`.')
opt = po.SolverFactory('ipopt')
results = opt.solve(m)
assert results['Solver'][0]['Status'].key == 'ok', "Solver returned non-optimally: {}".format(results)
return pd.Series(m.n.get_values(), index=L.index).astype(int)
def busmap_for_n_clusters(n, n_clusters, solver_name, algorithm="kmeans", **algorithm_kwds):
if algorithm == "kmeans":
algorithm_kwds.setdefault('n_init', 1000)
algorithm_kwds.setdefault('max_iter', 30000)
algorithm_kwds.setdefault('tol', 1e-6)
n.determine_network_topology()
n_clusters = distribute_clusters(n, n_clusters, solver_name=solver_name)
def reduce_network(n, buses):
nr = pypsa.Network()
nr.import_components_from_dataframe(buses, "Bus")
nr.import_components_from_dataframe(n.lines.loc[n.lines.bus0.isin(buses.index) & n.lines.bus1.isin(buses.index)], "Line")
return nr
def busmap_for_country(x):
prefix = x.name[0] + x.name[1] + ' '
logger.debug("Determining busmap for country {}".format(prefix[:-1]))
if len(x) == 1:
return pd.Series(prefix + '0', index=x.index)
weight = weighting_for_country(n, x)
if algorithm == "kmeans":
return prefix + busmap_by_kmeans(n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds)
elif algorithm == "spectral":
return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
elif algorithm == "louvain":
return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
else:
raise ArgumentError("`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'")
return (n.buses.groupby(['country', 'sub_network'], group_keys=False, squeeze=True)
.apply(busmap_for_country).rename('busmap'))
def plot_busmap_for_n_clusters(n, n_clusters=50):
busmap = busmap_for_n_clusters(n, n_clusters)
cs = busmap.unique()
cr = sns.color_palette("hls", len(cs))
n.plot(bus_colors=busmap.map(dict(zip(cs, cr))))
del cs, cr
def clustering_for_n_clusters(n, n_clusters, aggregate_carriers=None,
line_length_factor=1.25, potential_mode='simple',
solver_name="cbc", algorithm="kmeans"):
if potential_mode == 'simple':
p_nom_max_strategy = np.sum
elif potential_mode == 'conservative':
p_nom_max_strategy = np.min
else:
raise AttributeError("potential_mode should be one of 'simple' or 'conservative', "
"but is '{}'".format(potential_mode))
clustering = get_clustering_from_busmap(
n, busmap_for_n_clusters(n, n_clusters, solver_name, algorithm),
bus_strategies=dict(country=_make_consense("Bus", "country")),
aggregate_generators_weighted=True,
aggregate_generators_carriers=aggregate_carriers,
aggregate_one_ports=["Load", "StorageUnit"],
line_length_factor=line_length_factor,
generator_strategies={'p_nom_max': p_nom_max_strategy}
)
return clustering
def save_to_geojson(s, fn):
if os.path.exists(fn):
os.unlink(fn)
df = s.reset_index()
schema = {**gpd.io.file.infer_schema(df), 'geometry': 'Unknown'}
df.to_file(fn, driver='GeoJSON', schema=schema)
def cluster_regions(busmaps, input=None, output=None):
if input is None: input = snakemake.input
if output is None: output = snakemake.output
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
for which in ('regions_onshore', 'regions_offshore'):
regions = gpd.read_file(getattr(input, which)).set_index('name')
geom_c = regions.geometry.groupby(busmap).apply(shapely.ops.cascaded_union)
regions_c = gpd.GeoDataFrame(dict(geometry=geom_c))
regions_c.index.name = 'name'
save_to_geojson(regions_c, getattr(output, which))
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
wildcards=Dict(network='elec', simpl='', clusters='45'),
input=Dict(
network='networks/{network}_s{simpl}.nc',
regions_onshore='resources/regions_onshore_{network}_s{simpl}.geojson',
regions_offshore='resources/regions_offshore_{network}_s{simpl}.geojson',
clustermaps='resources/clustermaps_{network}_s{simpl}.h5'
),
output=Dict(
network='networks/{network}_s{simpl}_{clusters}.nc',
regions_onshore='resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson',
regions_offshore='resources/regions_offshore_{network}_s{simpl}_{clusters}.geojson',
clustermaps='resources/clustermaps_{network}_s{simpl}_{clusters}.h5'
)
)
logging.basicConfig(level=snakemake.config['logging_level'])
n = pypsa.Network(snakemake.input.network)
renewable_carriers = pd.Index([tech
for tech in n.generators.carrier.unique()
if tech.split('-', 2)[0] in snakemake.config['renewable']])
if snakemake.wildcards.clusters.endswith('m'):
n_clusters = int(snakemake.wildcards.clusters[:-1])
aggregate_carriers = pd.Index(n.generators.carrier.unique()).difference(renewable_carriers)
else:
n_clusters = int(snakemake.wildcards.clusters)
aggregate_carriers = None # All
if n_clusters == len(n.buses):
# Fast-path if no clustering is necessary
busmap = n.buses.index.to_series()
linemap = n.lines.index.to_series()
clustering = pypsa.networkclustering.Clustering(n, busmap, linemap, linemap, pd.Series(dtype='O'))
else:
line_length_factor = snakemake.config['lines']['length_factor']
def consense(x):
v = x.iat[0]
assert ((x == v).all() or x.isnull().all()), (
"The `potential` configuration option must agree for all renewable carriers, for now!"
)
return v
potential_mode = consense(pd.Series([snakemake.config['renewable'][tech]['potential']
for tech in renewable_carriers]))
clustering = clustering_for_n_clusters(n, n_clusters, aggregate_carriers,
line_length_factor=line_length_factor,
potential_mode=potential_mode,
solver_name=snakemake.config['solving']['solver']['name'])
clustering.network.export_to_netcdf(snakemake.output.network)
with pd.HDFStore(snakemake.output.clustermaps, mode='w') as store:
with pd.HDFStore(snakemake.input.clustermaps, mode='r') as clustermaps:
for attr in clustermaps.keys():
store.put(attr, clustermaps[attr], format="table", index=False)
for attr in ('busmap', 'linemap', 'linemap_positive', 'linemap_negative'):
store.put(attr, getattr(clustering, attr), format="table", index=False)
cluster_regions((clustering.busmap,))