54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
|
|
import pandas as pd
|
|
|
|
idx = pd.IndexSlice
|
|
|
|
def build_biomass_potentials():
|
|
|
|
#delete empty column C from this sheet first before reading it in
|
|
df = pd.read_excel(snakemake.input.jrc_potentials,
|
|
"Potentials (PJ)")
|
|
|
|
df.rename(columns={"Unnamed: 16":"Municipal waste"},inplace=True)
|
|
df.drop(columns="Total",inplace=True)
|
|
df.replace("-",0.,inplace=True)
|
|
|
|
df_dict = {}
|
|
|
|
for i in range(36):
|
|
df_dict[df.iloc[i*16,1]] = df.iloc[1+i*16:(i+1)*16].astype(float)
|
|
|
|
df_new = pd.concat(df_dict)
|
|
|
|
us_type = pd.Series(index=df_new.columns)
|
|
us_type.iloc[0:7] = "not included"
|
|
us_type.iloc[7:8] = "biogas"
|
|
us_type.iloc[8:9] = "solid biomass"
|
|
us_type.iloc[9:11] = "not included"
|
|
us_type.iloc[11:16] = "solid biomass"
|
|
us_type.iloc[16:17] = "biogas"
|
|
|
|
|
|
#convert from PJ to MWh
|
|
biomass_potentials = df_new.loc[idx[:,snakemake.config['biomass']['year'],snakemake.config['biomass']['scenario']],:].groupby(us_type,axis=1).sum().groupby(level=0).sum().rename({"UK" : "GB", "BH" : "BA"})/3.6*1e6
|
|
biomass_potentials.to_csv(snakemake.output.biomass_potentials)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
# Detect running outside of snakemake and mock snakemake for testing
|
|
if 'snakemake' not in globals():
|
|
from vresutils import Dict
|
|
import yaml
|
|
snakemake = Dict()
|
|
snakemake.input = Dict()
|
|
snakemake.input['jrc_potentials'] = "data/biomass/JRC Biomass Potentials.xlsx"
|
|
snakemake.output = Dict()
|
|
snakemake.output['biomass_potentials'] = 'data/biomass_potentials.csv'
|
|
with open('config.yaml') as f:
|
|
snakemake.config = yaml.load(f)
|
|
|
|
build_biomass_potentials()
|